From 4421ca203f3f8b32925099c38779d1eb55f2214b Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Jan=20Uhl=C3=ADk?= <jan@uhlik.me>
Date: Thu, 29 Mar 2018 21:02:24 +0200
Subject: [PATCH] Add MM algorithm.

---
 alib2graph_algo/src/shortest_path/MM.cpp |  92 ++++++++
 alib2graph_algo/src/shortest_path/MM.hpp | 271 +++++++++++++++++++++++
 2 files changed, 363 insertions(+)
 create mode 100644 alib2graph_algo/src/shortest_path/MM.cpp
 create mode 100644 alib2graph_algo/src/shortest_path/MM.hpp

diff --git a/alib2graph_algo/src/shortest_path/MM.cpp b/alib2graph_algo/src/shortest_path/MM.cpp
new file mode 100644
index 0000000000..c6c04f6636
--- /dev/null
+++ b/alib2graph_algo/src/shortest_path/MM.cpp
@@ -0,0 +1,92 @@
+// MM.cpp
+//
+//     Created on: 02. 02. 2018
+//         Author: Jan Uhlik
+//    Modified by:
+//
+// Copyright (c) 2017 Czech Technical University in Prague | Faculty of Information Technology. All rights reserved.
+// Git repository: https://gitlab.fit.cvut.cz/algorithms-library-toolkit/automata-library
+
+#include "MM.hpp"
+
+#include <registration/AlgoRegistration.hpp>
+
+namespace {
+
+// ---------------------------------------------------------------------------------------------------------------------
+
+auto MM1 = registration::AbstractRegister<shortest_path::MM,
+                                          ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>,
+                                          const graph::WeightedUndirectedGraph<> &,
+                                          const DefaultNodeType &,
+                                          const DefaultNodeType &,
+                                          std::function<DefaultWeightType(const DefaultNodeType &,
+                                                                          const DefaultNodeType &)> >(
+    shortest_path::MM::findPathBidirectionalRegistration);
+
+auto MM2 = registration::AbstractRegister<shortest_path::MM,
+                                          ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>,
+                                          const graph::WeightedUndirectedMultiGraph<> &,
+                                          const DefaultNodeType &,
+                                          const DefaultNodeType &,
+                                          std::function<DefaultWeightType(const DefaultNodeType &,
+                                                                          const DefaultNodeType &)> >(
+    shortest_path::MM::findPathBidirectionalRegistration);
+
+auto MM3 = registration::AbstractRegister<shortest_path::MM,
+                                          ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>,
+                                          const graph::WeightedDirectedGraph<> &,
+                                          const DefaultNodeType &,
+                                          const DefaultNodeType &,
+                                          std::function<DefaultWeightType(const DefaultNodeType &,
+                                                                          const DefaultNodeType &)> >(
+    shortest_path::MM::findPathBidirectionalRegistration);
+
+auto MM4 = registration::AbstractRegister<shortest_path::MM,
+                                          ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>,
+                                          const graph::WeightedDirectedMultiGraph<> &,
+                                          const DefaultNodeType &,
+                                          const DefaultNodeType &,
+                                          std::function<DefaultWeightType(const DefaultNodeType &,
+                                                                          const DefaultNodeType &)> >(
+    shortest_path::MM::findPathBidirectionalRegistration);
+
+auto MM5 = registration::AbstractRegister<shortest_path::MM,
+                                          ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>,
+                                          const graph::WeightedMixedGraph<> &,
+                                          const DefaultNodeType &,
+                                          const DefaultNodeType &,
+                                          std::function<DefaultWeightType(const DefaultNodeType &,
+                                                                          const DefaultNodeType &)> >(
+    shortest_path::MM::findPathBidirectionalRegistration);
+
+auto MM6 = registration::AbstractRegister<shortest_path::MM,
+                                          ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>,
+                                          const graph::WeightedMixedMultiGraph<> &,
+                                          const DefaultNodeType &,
+                                          const DefaultNodeType &,
+                                          std::function<DefaultWeightType(const DefaultNodeType &,
+                                                                          const DefaultNodeType &)> >(
+    shortest_path::MM::findPathBidirectionalRegistration);
+
+auto MMGrid1 = registration::AbstractRegister<shortest_path::MM,
+                                              ext::pair<ext::vector<DefaultSquareGridNodeType>, DefaultWeightType>,
+                                              const grid::WeightedSquareGrid4<> &,
+                                              const DefaultSquareGridNodeType &,
+                                              const DefaultSquareGridNodeType &,
+                                              std::function<DefaultWeightType(const DefaultSquareGridNodeType &,
+                                                                              const DefaultSquareGridNodeType &)> >(
+    shortest_path::MM::findPathBidirectionalRegistration);
+
+auto MMGrid2 = registration::AbstractRegister<shortest_path::MM,
+                                              ext::pair<ext::vector<DefaultSquareGridNodeType>, DefaultWeightType>,
+                                              const grid::WeightedSquareGrid8<> &,
+                                              const DefaultSquareGridNodeType &,
+                                              const DefaultSquareGridNodeType &,
+                                              std::function<DefaultWeightType(const DefaultSquareGridNodeType &,
+                                                                              const DefaultSquareGridNodeType &)> >(
+    shortest_path::MM::findPathBidirectionalRegistration);
+
+// ---------------------------------------------------------------------------------------------------------------------
+
+}
diff --git a/alib2graph_algo/src/shortest_path/MM.hpp b/alib2graph_algo/src/shortest_path/MM.hpp
new file mode 100644
index 0000000000..c2bd18ba42
--- /dev/null
+++ b/alib2graph_algo/src/shortest_path/MM.hpp
@@ -0,0 +1,271 @@
+// MM.hpp
+//
+//     Created on: 02. 02. 2018
+//         Author: Jan Uhlik
+//    Modified by:
+//
+// Copyright (c) 2017 Czech Technical University in Prague | Faculty of Information Technology. All rights reserved.
+// Git repository: https://gitlab.fit.cvut.cz/algorithms-library-toolkit/automata-library
+
+#ifndef ALIB2_MM_HPP
+#define ALIB2_MM_HPP
+
+#include <alib/vector>
+#include <alib/map>
+#include <alib/set>
+#include <alib/tuple>
+#include <functional>
+#include <alib/algorithm>
+
+#include <common/ReconstructPath.hpp>
+#include <common/SupportFunction.hpp>
+
+namespace shortest_path {
+
+class MM {
+// ---------------------------------------------------------------------------------------------------------------------
+
+ public:
+
+  /// Find the shortest path using AStar algorithm with MM optimalization from the \p start node to the \p goal node in the \p graph.
+  /// This algorithm is run in both direction, from \p start and also from \p goal.
+  ///
+  /// Whenever node is opened, \p f_user is called with two parameters (the opened node and value of currently shortest path).
+  ///
+  /// The heuristic function must be admissible and monotone.
+  ///
+  /// \param graph to explore.
+  /// \param start initial node.
+  /// \param goal final node.
+  /// \param f_heuristic_forward front-to-end (node->goal) heuristic function which accept node and return edge_type::weight_type
+  /// \param f_heuristic_backward front-to-end (node->start) heuristic function which accept node and return edge_type::weight_type
+  /// \param f_user function which is called for every opened node with value of currently shortest path.
+  ///
+  /// \returns pair where first := shortest path := distance of path, if there is no such path vector is empty and distance std::numeric_limits<edge_type:weight_type>::max()
+  ///
+  /// \note TEdge of \p graph must follow graph::edge::WeightedEdge interface
+  /// \sa graph::edge_type::WeightedEdge
+  ///
+  /// \throws std::out_of_range if \p graph contains an edge with a negative weight
+  ///
+  template<
+      typename TGraph,
+      typename TNode,
+      typename F1 = std::function<typename TGraph::edge_type::weight_type(const TNode &)>,
+      typename F2 = std::function<typename TGraph::edge_type::weight_type(const TNode &)>,
+      typename F3 = std::function<void(const TNode &, const typename TGraph::edge_type::weight_type &)>>
+  static
+  ext::pair<ext::vector<TNode>, typename TGraph::edge_type::weight_type>
+  findPathBidirectional(const TGraph &graph,
+                        const TNode &start,
+                        const TNode &goal,
+                        F1 f_heuristic_forward,
+                        F2 f_heuristic_backward,
+                        F3 f_user = [](const TNode &,
+                                       const typename TGraph::edge_type::weight_type &) {});
+
+  template<
+      typename TGraph,
+      typename TNode,
+      typename F1 = std::function<typename TGraph::edge_type::weight_type(const TNode &, const TNode &)>
+  >
+  static
+  ext::pair<ext::vector<TNode>, typename TGraph::edge_type::weight_type>
+  findPathBidirectionalRegistration(const TGraph &graph,
+                                    const TNode &start,
+                                    const TNode &goal,
+                                    F1 f_heuristic) {
+    return findPathBidirectional(graph, start, goal,
+                                 [&](const TNode &n) { return f_heuristic(goal, n); },
+                                 [&](const TNode &n) { return f_heuristic(start, n); });
+
+  }
+
+
+// =====================================================================================================================
+
+ private:
+
+  template<typename TNode, typename TWeight>
+  struct Data {
+    ext::set<ext::tuple<TWeight, TWeight, TNode>> queue; // priority queue
+
+    ext::set<ext::pair<TWeight, TNode>> f_set; // F score of currently OPEN nodes
+    ext::map<TNode, TWeight> f_map; // F score
+
+    ext::set<ext::pair<TWeight, TNode>> g_set; // G score of currently OPEN nodes
+    ext::map<TNode, TWeight> g_map; // G score
+
+    ext::map<TNode, TNode> p; // parents
+  };
+
+// ---------------------------------------------------------------------------------------------------------------------
+
+  template<typename FSuccEdge, typename TNode, typename TWeight, typename F1, typename F2, typename F3>
+  static void relaxation(FSuccEdge successor_edges,
+                         Data<TNode, TWeight> &data,
+                         F1 f_heuristic,
+                         F2 f_user,
+                         F3 f_update);
+
+// ---------------------------------------------------------------------------------------------------------------------
+
+  template<typename TNode, typename TWeight, typename F>
+  inline static void init(MM::Data<TNode, TWeight> &data, const TNode &start, F f_heuristic);
+
+
+
+// ---------------------------------------------------------------------------------------------------------------------
+};
+
+// =====================================================================================================================
+
+template<typename TGraph, typename TNode, typename F1, typename F2, typename F3>
+ext::pair<ext::vector<TNode>, typename TGraph::edge_type::weight_type>
+MM::findPathBidirectional(const TGraph &graph,
+                          const TNode &start,
+                          const TNode &goal,
+                          F1 f_heuristic_forward,
+                          F2 f_heuristic_backward,
+                          F3 f_user) {
+
+  using weight_type = typename TGraph::edge_type::weight_type;
+
+  weight_type eps = common::SupportFunction::getMinEdgeValue(graph); // Smallest value of the weight in graph
+
+  weight_type p = std::numeric_limits<weight_type>::max(); // Currently best path weight
+  ext::vector<TNode> intersection_nodes; // Last one is currently best intersection node
+  Data<TNode, weight_type> forward_data, backward_data;
+
+  // Init forward search
+  init(forward_data, start, f_heuristic_forward);
+  auto f_forward_update = [&](const auto &s) -> void {
+    if (backward_data.g_map.find(s) != backward_data.g_map.end()) {
+      if (forward_data.g_map.at(s) + backward_data.g_map.at(s) < p) {
+        p = forward_data.g_map.at(s) + backward_data.g_map.at(s);
+        intersection_nodes.push_back(s);
+      }
+    }
+  };
+
+  // Init backward search
+  init(backward_data, goal, f_heuristic_backward);
+  auto f_backward_update = [&](const auto &s) -> void {
+    if (forward_data.g_map.find(s) != forward_data.g_map.end()) {
+      if (backward_data.g_map.at(s) + forward_data.g_map.at(s) < p) {
+        p = backward_data.g_map.at(s) + forward_data.g_map.at(s);
+        intersection_nodes.push_back(s);
+      }
+    }
+  };
+
+  while (!forward_data.queue.empty() && !backward_data.queue.empty()) {
+    // Check whether can stop searching
+    if (ext::max(std::min(std::get<0>(*forward_data.queue.begin()),
+                                                  std::get<0>(*backward_data.queue.begin())),
+                                         forward_data.f_set.begin()->first,
+                                         backward_data.f_set.begin()->first,
+                                         forward_data.g_set.begin()->first + backward_data.g_set.begin()->first + eps)
+        >= p) {
+      return common::ReconstructPath::reconstructWeightedPath(forward_data.p,
+                                                              backward_data.p,
+                                                              forward_data.g_map,
+                                                              backward_data.g_map,
+                                                              start,
+                                                              goal,
+                                                              intersection_nodes.back());
+    }
+
+    // Expand the lower value
+    if (std::get<0>(*forward_data.queue.begin()) < std::get<0>(*backward_data.queue.begin())) {
+      // Forward search
+      relaxation([&](const auto &node) -> auto { return graph.successorEdges(node); },
+                 forward_data,
+                 f_heuristic_forward,
+                 f_user,
+                 f_forward_update);
+    } else {
+      // Backward search
+      relaxation([&](const auto &node) -> auto { return graph.predecessorEdges(node); },
+                 backward_data,
+                 f_heuristic_backward,
+                 f_user,
+                 f_backward_update);
+    }
+  }
+
+  return ext::make_pair(ext::vector<TNode>(), p);
+}
+
+// ---------------------------------------------------------------------------------------------------------------------
+
+template<typename FSuccEdge, typename TNode, typename TWeight, typename F1, typename F2, typename F3>
+void MM::relaxation(FSuccEdge successor_edges,
+                    MM::Data<TNode, TWeight> &data,
+                    F1 f_heuristic,
+                    F2 f_user,
+                    F3 f_update) {
+  TNode n = std::get<2>(*data.queue.begin());
+  data.queue.erase(data.queue.begin()); // erase from priority queue
+  data.f_set.erase(data.f_set.find(ext::make_pair(data.f_map[n], n))); // erase from f score ordered array
+  data.g_set.erase(data.g_set.find(ext::make_pair(data.g_map[n], n))); // erase from g score ordered array
+
+  // Run user's function
+  f_user(n, data.g_map[n]);
+
+  for (const auto &s_edge: successor_edges(n)) {
+    const TNode &s = common::SupportFunction::other(s_edge, n); // successor
+
+    // Check for negative edge
+    if (s_edge.weight() < 0) {
+      throw std::out_of_range("MM: Detect negative weight on edge in graph.");
+    }
+
+    // Calculate new G score and F score
+    TWeight gscore = data.g_map.at(n) + s_edge.weight();
+
+    // Search if the node s was already visited
+    auto search_g = data.g_map.find(s);
+
+    // If not or the G score can be improve do relaxation
+    if (search_g == data.g_map.end() || data.g_map.at(s) > gscore) {
+      // Search if the node s is in OPEN
+      auto search_q = data.queue.find(ext::make_tuple(std::max(data.f_map[s], 2 * data.g_map[s]), data.g_map[s], s));
+
+      if (search_q != data.queue.end()) {
+        // Erase node from priority queue
+        data.queue.erase(search_q);
+        data.g_set.erase(data.g_set.find(ext::make_pair(data.g_map[s], s)));
+        data.f_set.erase(data.f_set.find(ext::make_pair(data.f_map[s], s)));
+      }
+
+      data.g_map[s] = gscore;
+      data.g_set.insert(ext::make_pair(data.g_map[s], s));
+      data.f_map[s] = gscore + f_heuristic(s);
+      data.f_set.insert(ext::make_pair(data.f_map[s], s));
+      data.p.insert_or_assign(s, n);
+      data.queue.insert(ext::make_tuple(std::max(data.f_map[s], 2 * data.g_map[s]), data.g_map[s], s));
+
+      f_update(s); // Update currently best path
+    }
+  }
+}
+
+// ---------------------------------------------------------------------------------------------------------------------
+
+template<typename TNode, typename TWeight, typename F>
+void MM::init(MM::Data<TNode, TWeight> &data, const TNode &start, F f_heuristic) {
+  data.g_map[start] = 0;
+  data.g_set.insert(ext::make_pair(data.g_map[start], start));
+  data.f_map[start] = data.g_map[start] + f_heuristic(start);
+  data.f_set.insert(ext::make_pair(data.f_map[start], start));
+  data.p.insert_or_assign(start, start);
+  data.queue.insert(ext::make_tuple(std::max(data.f_map[start], 2 * data.g_map[start]),
+                                    data.g_map[start],
+                                    start));
+}
+
+// ---------------------------------------------------------------------------------------------------------------------
+
+} // namespace shortest_path
+#endif //ALIB2_MM_HPP
-- 
GitLab