From 4421ca203f3f8b32925099c38779d1eb55f2214b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jan=20Uhl=C3=ADk?= <jan@uhlik.me> Date: Thu, 29 Mar 2018 21:02:24 +0200 Subject: [PATCH] Add MM algorithm. --- alib2graph_algo/src/shortest_path/MM.cpp | 92 ++++++++ alib2graph_algo/src/shortest_path/MM.hpp | 271 +++++++++++++++++++++++ 2 files changed, 363 insertions(+) create mode 100644 alib2graph_algo/src/shortest_path/MM.cpp create mode 100644 alib2graph_algo/src/shortest_path/MM.hpp diff --git a/alib2graph_algo/src/shortest_path/MM.cpp b/alib2graph_algo/src/shortest_path/MM.cpp new file mode 100644 index 0000000000..c6c04f6636 --- /dev/null +++ b/alib2graph_algo/src/shortest_path/MM.cpp @@ -0,0 +1,92 @@ +// MM.cpp +// +// Created on: 02. 02. 2018 +// Author: Jan Uhlik +// Modified by: +// +// Copyright (c) 2017 Czech Technical University in Prague | Faculty of Information Technology. All rights reserved. +// Git repository: https://gitlab.fit.cvut.cz/algorithms-library-toolkit/automata-library + +#include "MM.hpp" + +#include <registration/AlgoRegistration.hpp> + +namespace { + +// --------------------------------------------------------------------------------------------------------------------- + +auto MM1 = registration::AbstractRegister<shortest_path::MM, + ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>, + const graph::WeightedUndirectedGraph<> &, + const DefaultNodeType &, + const DefaultNodeType &, + std::function<DefaultWeightType(const DefaultNodeType &, + const DefaultNodeType &)> >( + shortest_path::MM::findPathBidirectionalRegistration); + +auto MM2 = registration::AbstractRegister<shortest_path::MM, + ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>, + const graph::WeightedUndirectedMultiGraph<> &, + const DefaultNodeType &, + const DefaultNodeType &, + std::function<DefaultWeightType(const DefaultNodeType &, + const DefaultNodeType &)> >( + shortest_path::MM::findPathBidirectionalRegistration); + +auto MM3 = registration::AbstractRegister<shortest_path::MM, + ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>, + const graph::WeightedDirectedGraph<> &, + const DefaultNodeType &, + const DefaultNodeType &, + std::function<DefaultWeightType(const DefaultNodeType &, + const DefaultNodeType &)> >( + shortest_path::MM::findPathBidirectionalRegistration); + +auto MM4 = registration::AbstractRegister<shortest_path::MM, + ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>, + const graph::WeightedDirectedMultiGraph<> &, + const DefaultNodeType &, + const DefaultNodeType &, + std::function<DefaultWeightType(const DefaultNodeType &, + const DefaultNodeType &)> >( + shortest_path::MM::findPathBidirectionalRegistration); + +auto MM5 = registration::AbstractRegister<shortest_path::MM, + ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>, + const graph::WeightedMixedGraph<> &, + const DefaultNodeType &, + const DefaultNodeType &, + std::function<DefaultWeightType(const DefaultNodeType &, + const DefaultNodeType &)> >( + shortest_path::MM::findPathBidirectionalRegistration); + +auto MM6 = registration::AbstractRegister<shortest_path::MM, + ext::pair<ext::vector<DefaultNodeType>, DefaultWeightType>, + const graph::WeightedMixedMultiGraph<> &, + const DefaultNodeType &, + const DefaultNodeType &, + std::function<DefaultWeightType(const DefaultNodeType &, + const DefaultNodeType &)> >( + shortest_path::MM::findPathBidirectionalRegistration); + +auto MMGrid1 = registration::AbstractRegister<shortest_path::MM, + ext::pair<ext::vector<DefaultSquareGridNodeType>, DefaultWeightType>, + const grid::WeightedSquareGrid4<> &, + const DefaultSquareGridNodeType &, + const DefaultSquareGridNodeType &, + std::function<DefaultWeightType(const DefaultSquareGridNodeType &, + const DefaultSquareGridNodeType &)> >( + shortest_path::MM::findPathBidirectionalRegistration); + +auto MMGrid2 = registration::AbstractRegister<shortest_path::MM, + ext::pair<ext::vector<DefaultSquareGridNodeType>, DefaultWeightType>, + const grid::WeightedSquareGrid8<> &, + const DefaultSquareGridNodeType &, + const DefaultSquareGridNodeType &, + std::function<DefaultWeightType(const DefaultSquareGridNodeType &, + const DefaultSquareGridNodeType &)> >( + shortest_path::MM::findPathBidirectionalRegistration); + +// --------------------------------------------------------------------------------------------------------------------- + +} diff --git a/alib2graph_algo/src/shortest_path/MM.hpp b/alib2graph_algo/src/shortest_path/MM.hpp new file mode 100644 index 0000000000..c2bd18ba42 --- /dev/null +++ b/alib2graph_algo/src/shortest_path/MM.hpp @@ -0,0 +1,271 @@ +// MM.hpp +// +// Created on: 02. 02. 2018 +// Author: Jan Uhlik +// Modified by: +// +// Copyright (c) 2017 Czech Technical University in Prague | Faculty of Information Technology. All rights reserved. +// Git repository: https://gitlab.fit.cvut.cz/algorithms-library-toolkit/automata-library + +#ifndef ALIB2_MM_HPP +#define ALIB2_MM_HPP + +#include <alib/vector> +#include <alib/map> +#include <alib/set> +#include <alib/tuple> +#include <functional> +#include <alib/algorithm> + +#include <common/ReconstructPath.hpp> +#include <common/SupportFunction.hpp> + +namespace shortest_path { + +class MM { +// --------------------------------------------------------------------------------------------------------------------- + + public: + + /// Find the shortest path using AStar algorithm with MM optimalization from the \p start node to the \p goal node in the \p graph. + /// This algorithm is run in both direction, from \p start and also from \p goal. + /// + /// Whenever node is opened, \p f_user is called with two parameters (the opened node and value of currently shortest path). + /// + /// The heuristic function must be admissible and monotone. + /// + /// \param graph to explore. + /// \param start initial node. + /// \param goal final node. + /// \param f_heuristic_forward front-to-end (node->goal) heuristic function which accept node and return edge_type::weight_type + /// \param f_heuristic_backward front-to-end (node->start) heuristic function which accept node and return edge_type::weight_type + /// \param f_user function which is called for every opened node with value of currently shortest path. + /// + /// \returns pair where first := shortest path := distance of path, if there is no such path vector is empty and distance std::numeric_limits<edge_type:weight_type>::max() + /// + /// \note TEdge of \p graph must follow graph::edge::WeightedEdge interface + /// \sa graph::edge_type::WeightedEdge + /// + /// \throws std::out_of_range if \p graph contains an edge with a negative weight + /// + template< + typename TGraph, + typename TNode, + typename F1 = std::function<typename TGraph::edge_type::weight_type(const TNode &)>, + typename F2 = std::function<typename TGraph::edge_type::weight_type(const TNode &)>, + typename F3 = std::function<void(const TNode &, const typename TGraph::edge_type::weight_type &)>> + static + ext::pair<ext::vector<TNode>, typename TGraph::edge_type::weight_type> + findPathBidirectional(const TGraph &graph, + const TNode &start, + const TNode &goal, + F1 f_heuristic_forward, + F2 f_heuristic_backward, + F3 f_user = [](const TNode &, + const typename TGraph::edge_type::weight_type &) {}); + + template< + typename TGraph, + typename TNode, + typename F1 = std::function<typename TGraph::edge_type::weight_type(const TNode &, const TNode &)> + > + static + ext::pair<ext::vector<TNode>, typename TGraph::edge_type::weight_type> + findPathBidirectionalRegistration(const TGraph &graph, + const TNode &start, + const TNode &goal, + F1 f_heuristic) { + return findPathBidirectional(graph, start, goal, + [&](const TNode &n) { return f_heuristic(goal, n); }, + [&](const TNode &n) { return f_heuristic(start, n); }); + + } + + +// ===================================================================================================================== + + private: + + template<typename TNode, typename TWeight> + struct Data { + ext::set<ext::tuple<TWeight, TWeight, TNode>> queue; // priority queue + + ext::set<ext::pair<TWeight, TNode>> f_set; // F score of currently OPEN nodes + ext::map<TNode, TWeight> f_map; // F score + + ext::set<ext::pair<TWeight, TNode>> g_set; // G score of currently OPEN nodes + ext::map<TNode, TWeight> g_map; // G score + + ext::map<TNode, TNode> p; // parents + }; + +// --------------------------------------------------------------------------------------------------------------------- + + template<typename FSuccEdge, typename TNode, typename TWeight, typename F1, typename F2, typename F3> + static void relaxation(FSuccEdge successor_edges, + Data<TNode, TWeight> &data, + F1 f_heuristic, + F2 f_user, + F3 f_update); + +// --------------------------------------------------------------------------------------------------------------------- + + template<typename TNode, typename TWeight, typename F> + inline static void init(MM::Data<TNode, TWeight> &data, const TNode &start, F f_heuristic); + + + +// --------------------------------------------------------------------------------------------------------------------- +}; + +// ===================================================================================================================== + +template<typename TGraph, typename TNode, typename F1, typename F2, typename F3> +ext::pair<ext::vector<TNode>, typename TGraph::edge_type::weight_type> +MM::findPathBidirectional(const TGraph &graph, + const TNode &start, + const TNode &goal, + F1 f_heuristic_forward, + F2 f_heuristic_backward, + F3 f_user) { + + using weight_type = typename TGraph::edge_type::weight_type; + + weight_type eps = common::SupportFunction::getMinEdgeValue(graph); // Smallest value of the weight in graph + + weight_type p = std::numeric_limits<weight_type>::max(); // Currently best path weight + ext::vector<TNode> intersection_nodes; // Last one is currently best intersection node + Data<TNode, weight_type> forward_data, backward_data; + + // Init forward search + init(forward_data, start, f_heuristic_forward); + auto f_forward_update = [&](const auto &s) -> void { + if (backward_data.g_map.find(s) != backward_data.g_map.end()) { + if (forward_data.g_map.at(s) + backward_data.g_map.at(s) < p) { + p = forward_data.g_map.at(s) + backward_data.g_map.at(s); + intersection_nodes.push_back(s); + } + } + }; + + // Init backward search + init(backward_data, goal, f_heuristic_backward); + auto f_backward_update = [&](const auto &s) -> void { + if (forward_data.g_map.find(s) != forward_data.g_map.end()) { + if (backward_data.g_map.at(s) + forward_data.g_map.at(s) < p) { + p = backward_data.g_map.at(s) + forward_data.g_map.at(s); + intersection_nodes.push_back(s); + } + } + }; + + while (!forward_data.queue.empty() && !backward_data.queue.empty()) { + // Check whether can stop searching + if (ext::max(std::min(std::get<0>(*forward_data.queue.begin()), + std::get<0>(*backward_data.queue.begin())), + forward_data.f_set.begin()->first, + backward_data.f_set.begin()->first, + forward_data.g_set.begin()->first + backward_data.g_set.begin()->first + eps) + >= p) { + return common::ReconstructPath::reconstructWeightedPath(forward_data.p, + backward_data.p, + forward_data.g_map, + backward_data.g_map, + start, + goal, + intersection_nodes.back()); + } + + // Expand the lower value + if (std::get<0>(*forward_data.queue.begin()) < std::get<0>(*backward_data.queue.begin())) { + // Forward search + relaxation([&](const auto &node) -> auto { return graph.successorEdges(node); }, + forward_data, + f_heuristic_forward, + f_user, + f_forward_update); + } else { + // Backward search + relaxation([&](const auto &node) -> auto { return graph.predecessorEdges(node); }, + backward_data, + f_heuristic_backward, + f_user, + f_backward_update); + } + } + + return ext::make_pair(ext::vector<TNode>(), p); +} + +// --------------------------------------------------------------------------------------------------------------------- + +template<typename FSuccEdge, typename TNode, typename TWeight, typename F1, typename F2, typename F3> +void MM::relaxation(FSuccEdge successor_edges, + MM::Data<TNode, TWeight> &data, + F1 f_heuristic, + F2 f_user, + F3 f_update) { + TNode n = std::get<2>(*data.queue.begin()); + data.queue.erase(data.queue.begin()); // erase from priority queue + data.f_set.erase(data.f_set.find(ext::make_pair(data.f_map[n], n))); // erase from f score ordered array + data.g_set.erase(data.g_set.find(ext::make_pair(data.g_map[n], n))); // erase from g score ordered array + + // Run user's function + f_user(n, data.g_map[n]); + + for (const auto &s_edge: successor_edges(n)) { + const TNode &s = common::SupportFunction::other(s_edge, n); // successor + + // Check for negative edge + if (s_edge.weight() < 0) { + throw std::out_of_range("MM: Detect negative weight on edge in graph."); + } + + // Calculate new G score and F score + TWeight gscore = data.g_map.at(n) + s_edge.weight(); + + // Search if the node s was already visited + auto search_g = data.g_map.find(s); + + // If not or the G score can be improve do relaxation + if (search_g == data.g_map.end() || data.g_map.at(s) > gscore) { + // Search if the node s is in OPEN + auto search_q = data.queue.find(ext::make_tuple(std::max(data.f_map[s], 2 * data.g_map[s]), data.g_map[s], s)); + + if (search_q != data.queue.end()) { + // Erase node from priority queue + data.queue.erase(search_q); + data.g_set.erase(data.g_set.find(ext::make_pair(data.g_map[s], s))); + data.f_set.erase(data.f_set.find(ext::make_pair(data.f_map[s], s))); + } + + data.g_map[s] = gscore; + data.g_set.insert(ext::make_pair(data.g_map[s], s)); + data.f_map[s] = gscore + f_heuristic(s); + data.f_set.insert(ext::make_pair(data.f_map[s], s)); + data.p.insert_or_assign(s, n); + data.queue.insert(ext::make_tuple(std::max(data.f_map[s], 2 * data.g_map[s]), data.g_map[s], s)); + + f_update(s); // Update currently best path + } + } +} + +// --------------------------------------------------------------------------------------------------------------------- + +template<typename TNode, typename TWeight, typename F> +void MM::init(MM::Data<TNode, TWeight> &data, const TNode &start, F f_heuristic) { + data.g_map[start] = 0; + data.g_set.insert(ext::make_pair(data.g_map[start], start)); + data.f_map[start] = data.g_map[start] + f_heuristic(start); + data.f_set.insert(ext::make_pair(data.f_map[start], start)); + data.p.insert_or_assign(start, start); + data.queue.insert(ext::make_tuple(std::max(data.f_map[start], 2 * data.g_map[start]), + data.g_map[start], + start)); +} + +// --------------------------------------------------------------------------------------------------------------------- + +} // namespace shortest_path +#endif //ALIB2_MM_HPP -- GitLab