From 57017721ae5d588873e69f0aa94de45303cc5082 Mon Sep 17 00:00:00 2001 From: Jan Travnicek <Jan.Travnicek@fit.cvut.cz> Date: Thu, 25 Jan 2018 17:08:02 +0100 Subject: [PATCH] fix documentation of InputDrivenPDAs --- alib2data/src/automaton/PDA/InputDrivenDPDA.h | 3 ++- alib2data/src/automaton/PDA/InputDrivenNPDA.h | 3 ++- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/alib2data/src/automaton/PDA/InputDrivenDPDA.h b/alib2data/src/automaton/PDA/InputDrivenDPDA.h index f5117a7c74..bca35c68a4 100644 --- a/alib2data/src/automaton/PDA/InputDrivenDPDA.h +++ b/alib2data/src/automaton/PDA/InputDrivenDPDA.h @@ -60,11 +60,12 @@ class InitialState; * \details * Definition is similar to the deterministic finite automata extended with pushdown store. - * A = (Q, T, G, I, \delta, \zeta, F), + * A = (Q, T, G, I, Z, \delta, \zeta, F), * Q (States) = nonempty finite set of states, * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though, * G (PushdownStoreAlphabet) = finite set of pushdown store symbol - having this empty makes the automaton equivalent to DFA * I (InitialState) = initial state, + * Z (InitialPushdownStoreSymbol) = initial pushdown store symbol * \delta = transition function of the form A \times a -> B, where A, B \in Q and a \in T, * \zeta = mapping function of the form a -> ( \alpha, \beta ) where a \in T and \alpha, \beta \in G* * F (FinalStates) = set of final states diff --git a/alib2data/src/automaton/PDA/InputDrivenNPDA.h b/alib2data/src/automaton/PDA/InputDrivenNPDA.h index 63b6a2c882..6920c5ccbf 100644 --- a/alib2data/src/automaton/PDA/InputDrivenNPDA.h +++ b/alib2data/src/automaton/PDA/InputDrivenNPDA.h @@ -44,11 +44,12 @@ class InitialState; * \details * Definition is similar to the deterministic finite automata extended with pushdown store. - * A = (Q, T, G, I, \delta, \zeta, F), + * A = (Q, T, G, I, Z, \delta, \zeta, F), * Q (States) = nonempty finite set of states, * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though, * G (PushdownStoreAlphabet) = finite set of pushdown store symbol - having this empty makes the automaton equivalent to NFA * I (InitialState) = initial state, + * Z (InitialPushdownStoreSymbol) = initial pushdown store symbol * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T, and P(Q) is a powerset of states, * \zeta = mapping function of the form a -> ( \alpha, \beta ) where a \in T and \alpha, \beta \in G* * F (FinalStates) = set of final states -- GitLab