From 818bedfaf92e412eb2c068a396e613857246b9c4 Mon Sep 17 00:00:00 2001 From: Jan Travnicek <Jan.Travnicek@fit.cvut.cz> Date: Fri, 12 Jan 2018 08:20:23 +0100 Subject: [PATCH] fix documentation of FSMs add finite state set --- alib2data/src/automaton/FSM/CompactNFA.h | 5 +++-- alib2data/src/automaton/FSM/DFA.h | 5 +++-- alib2data/src/automaton/FSM/EpsilonNFA.h | 5 +++-- alib2data/src/automaton/FSM/ExtendedNFA.h | 5 +++-- alib2data/src/automaton/FSM/MultiInitialStateNFA.h | 5 +++-- alib2data/src/automaton/FSM/NFA.h | 5 +++-- 6 files changed, 18 insertions(+), 12 deletions(-) diff --git a/alib2data/src/automaton/FSM/CompactNFA.h b/alib2data/src/automaton/FSM/CompactNFA.h index 1f7cc11c4d..d71a4149cd 100644 --- a/alib2data/src/automaton/FSM/CompactNFA.h +++ b/alib2data/src/automaton/FSM/CompactNFA.h @@ -60,11 +60,12 @@ class InitialState; * \details * Definition is classical definition of finite automata. - * A = (Q, T, I, \delta), + * A = (Q, T, I, \delta, F), * Q (States) = nonempty finite set of states, * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though, - * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T*, and P(Q) is a powerset of states, * I (InitialState) = initial state, + * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T*, and P(Q) is a powerset of states, + * F (FinalStates) = set of final states * * \tparam SymbolType used for the terminal alphabet * \tparam StateType used to the states, and the initial state of the automaton. diff --git a/alib2data/src/automaton/FSM/DFA.h b/alib2data/src/automaton/FSM/DFA.h index 49ad5b19a6..5a7dc73779 100644 --- a/alib2data/src/automaton/FSM/DFA.h +++ b/alib2data/src/automaton/FSM/DFA.h @@ -57,11 +57,12 @@ class InitialState; * \details * Definition is classical definition of finite automata. - * A = (Q, T, I, \delta), + * A = (Q, T, I, \delta, F), * Q (States) = nonempty finite set of states, * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though, - * \delta = transition function of the form A \times a -> B, where A, B \in Q and a \in T, * I (InitialState) = initial state, + * \delta = transition function of the form A \times a -> B, where A, B \in Q and a \in T, + * F (FinalStates) = set of final states * * Note that target state of a transition is required. * This class is used to store minimal, total, ... variants of deterministic finite automata. diff --git a/alib2data/src/automaton/FSM/EpsilonNFA.h b/alib2data/src/automaton/FSM/EpsilonNFA.h index b39ff81303..3dfa7f7085 100644 --- a/alib2data/src/automaton/FSM/EpsilonNFA.h +++ b/alib2data/src/automaton/FSM/EpsilonNFA.h @@ -60,11 +60,12 @@ class InitialState; * \details * Definition is classical definition of finite automata. - * A = (Q, T, I, \delta), + * A = (Q, T, I, \delta, F), * Q (States) = nonempty finite set of states, * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though, - * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T \cup \{\epsilon\}, and P(Q) is a powerset of states, * I (InitialState) = initial state, + * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T \cup \{\epsilon\}, and P(Q) is a powerset of states, + * F (FinalStates) = set of final states * * \tparam SymbolType used for the terminal alphabet * \tparam EpsilonType used for the epislon in the automaton. diff --git a/alib2data/src/automaton/FSM/ExtendedNFA.h b/alib2data/src/automaton/FSM/ExtendedNFA.h index 529117ac96..faee7aff08 100644 --- a/alib2data/src/automaton/FSM/ExtendedNFA.h +++ b/alib2data/src/automaton/FSM/ExtendedNFA.h @@ -63,11 +63,12 @@ class InitialState; * \details * Definition is classical definition of finite automata. - * A = (Q, T, I, \delta), + * A = (Q, T, I, \delta, F), * Q (States) = nonempty finite set of states, * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though, - * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in RegExpsOver(T), and P(Q) is a powerset of states, * I (InitialState) = initial state, + * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in RegExpsOver(T), and P(Q) is a powerset of states, + * F (FinalStates) = set of final states * * \tparam SymbolType used for the terminal alphabet * \tparam StateType used to the states, and the initial state of the automaton. diff --git a/alib2data/src/automaton/FSM/MultiInitialStateNFA.h b/alib2data/src/automaton/FSM/MultiInitialStateNFA.h index b4c87def1f..3719306e88 100644 --- a/alib2data/src/automaton/FSM/MultiInitialStateNFA.h +++ b/alib2data/src/automaton/FSM/MultiInitialStateNFA.h @@ -56,11 +56,12 @@ class InitialStates; * \details * Definition is classical definition of finite automata. - * A = (Q, T, I, \delta), + * A = (Q, T, I, \delta, F), * Q (States) = nonempty finite set of states, * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though, - * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T, and P(Q) is a powerset of states, * I (InitialState) = finite set of initial states, + * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T, and P(Q) is a powerset of states, + * F (FinalStates) = set of final states * * \tparam SymbolType used for the terminal alphabet * \tparam StateType used to the states, and the initial state of the automaton. diff --git a/alib2data/src/automaton/FSM/NFA.h b/alib2data/src/automaton/FSM/NFA.h index e49cd354ec..1a2ac1ac41 100644 --- a/alib2data/src/automaton/FSM/NFA.h +++ b/alib2data/src/automaton/FSM/NFA.h @@ -54,11 +54,12 @@ class InitialState; * \details * Definition is classical definition of finite automata. - * A = (Q, T, I, \delta), + * A = (Q, T, I, \delta, F), * Q (States) = nonempty finite set of states, * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though, - * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T, and P(Q) is a powerset of states, * I (InitialState) = initial state, + * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T, and P(Q) is a powerset of states, + * F (FinalStates) = set of final states * * \tparam SymbolType used for the terminal alphabet * \tparam StateType used to the states, and the initial state of the automaton. -- GitLab