From 818bedfaf92e412eb2c068a396e613857246b9c4 Mon Sep 17 00:00:00 2001
From: Jan Travnicek <Jan.Travnicek@fit.cvut.cz>
Date: Fri, 12 Jan 2018 08:20:23 +0100
Subject: [PATCH] fix documentation of FSMs add finite state set

---
 alib2data/src/automaton/FSM/CompactNFA.h           | 5 +++--
 alib2data/src/automaton/FSM/DFA.h                  | 5 +++--
 alib2data/src/automaton/FSM/EpsilonNFA.h           | 5 +++--
 alib2data/src/automaton/FSM/ExtendedNFA.h          | 5 +++--
 alib2data/src/automaton/FSM/MultiInitialStateNFA.h | 5 +++--
 alib2data/src/automaton/FSM/NFA.h                  | 5 +++--
 6 files changed, 18 insertions(+), 12 deletions(-)

diff --git a/alib2data/src/automaton/FSM/CompactNFA.h b/alib2data/src/automaton/FSM/CompactNFA.h
index 1f7cc11c4d..d71a4149cd 100644
--- a/alib2data/src/automaton/FSM/CompactNFA.h
+++ b/alib2data/src/automaton/FSM/CompactNFA.h
@@ -60,11 +60,12 @@ class InitialState;
 
  * \details
  * Definition is classical definition of finite automata.
- * A = (Q, T, I, \delta),
+ * A = (Q, T, I, \delta, F),
  * Q (States) = nonempty finite set of states,
  * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though,
- * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T*, and P(Q) is a powerset of states,
  * I (InitialState) = initial state,
+ * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T*, and P(Q) is a powerset of states,
+ * F (FinalStates) = set of final states
  *
  * \tparam SymbolType used for the terminal alphabet
  * \tparam StateType used to the states, and the initial state of the automaton.
diff --git a/alib2data/src/automaton/FSM/DFA.h b/alib2data/src/automaton/FSM/DFA.h
index 49ad5b19a6..5a7dc73779 100644
--- a/alib2data/src/automaton/FSM/DFA.h
+++ b/alib2data/src/automaton/FSM/DFA.h
@@ -57,11 +57,12 @@ class InitialState;
 
  * \details
  * Definition is classical definition of finite automata.
- * A = (Q, T, I, \delta),
+ * A = (Q, T, I, \delta, F),
  * Q (States) = nonempty finite set of states,
  * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though,
- * \delta = transition function of the form A \times a -> B, where A, B \in Q and a \in T,
  * I (InitialState) = initial state,
+ * \delta = transition function of the form A \times a -> B, where A, B \in Q and a \in T,
+ * F (FinalStates) = set of final states
  *
  * Note that target state of a transition is required.
  * This class is used to store minimal, total, ... variants of deterministic finite automata.
diff --git a/alib2data/src/automaton/FSM/EpsilonNFA.h b/alib2data/src/automaton/FSM/EpsilonNFA.h
index b39ff81303..3dfa7f7085 100644
--- a/alib2data/src/automaton/FSM/EpsilonNFA.h
+++ b/alib2data/src/automaton/FSM/EpsilonNFA.h
@@ -60,11 +60,12 @@ class InitialState;
 
  * \details
  * Definition is classical definition of finite automata.
- * A = (Q, T, I, \delta),
+ * A = (Q, T, I, \delta, F),
  * Q (States) = nonempty finite set of states,
  * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though,
- * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T \cup \{\epsilon\}, and P(Q) is a powerset of states,
  * I (InitialState) = initial state,
+ * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T \cup \{\epsilon\}, and P(Q) is a powerset of states,
+ * F (FinalStates) = set of final states
  *
  * \tparam SymbolType used for the terminal alphabet
  * \tparam EpsilonType used for the epislon in the automaton.
diff --git a/alib2data/src/automaton/FSM/ExtendedNFA.h b/alib2data/src/automaton/FSM/ExtendedNFA.h
index 529117ac96..faee7aff08 100644
--- a/alib2data/src/automaton/FSM/ExtendedNFA.h
+++ b/alib2data/src/automaton/FSM/ExtendedNFA.h
@@ -63,11 +63,12 @@ class InitialState;
 
  * \details
  * Definition is classical definition of finite automata.
- * A = (Q, T, I, \delta),
+ * A = (Q, T, I, \delta, F),
  * Q (States) = nonempty finite set of states,
  * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though,
- * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in RegExpsOver(T), and P(Q) is a powerset of states,
  * I (InitialState) = initial state,
+ * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in RegExpsOver(T), and P(Q) is a powerset of states,
+ * F (FinalStates) = set of final states
  *
  * \tparam SymbolType used for the terminal alphabet
  * \tparam StateType used to the states, and the initial state of the automaton.
diff --git a/alib2data/src/automaton/FSM/MultiInitialStateNFA.h b/alib2data/src/automaton/FSM/MultiInitialStateNFA.h
index b4c87def1f..3719306e88 100644
--- a/alib2data/src/automaton/FSM/MultiInitialStateNFA.h
+++ b/alib2data/src/automaton/FSM/MultiInitialStateNFA.h
@@ -56,11 +56,12 @@ class InitialStates;
 
  * \details
  * Definition is classical definition of finite automata.
- * A = (Q, T, I, \delta),
+ * A = (Q, T, I, \delta, F),
  * Q (States) = nonempty finite set of states,
  * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though,
- * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T, and P(Q) is a powerset of states,
  * I (InitialState) = finite set of initial states,
+ * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T, and P(Q) is a powerset of states,
+ * F (FinalStates) = set of final states
  *
  * \tparam SymbolType used for the terminal alphabet
  * \tparam StateType used to the states, and the initial state of the automaton.
diff --git a/alib2data/src/automaton/FSM/NFA.h b/alib2data/src/automaton/FSM/NFA.h
index e49cd354ec..1a2ac1ac41 100644
--- a/alib2data/src/automaton/FSM/NFA.h
+++ b/alib2data/src/automaton/FSM/NFA.h
@@ -54,11 +54,12 @@ class InitialState;
 
  * \details
  * Definition is classical definition of finite automata.
- * A = (Q, T, I, \delta),
+ * A = (Q, T, I, \delta, F),
  * Q (States) = nonempty finite set of states,
  * T (TerminalAlphabet) = finite set of terminal symbols - having this empty won't let automaton do much though,
- * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T, and P(Q) is a powerset of states,
  * I (InitialState) = initial state,
+ * \delta = transition function of the form A \times a -> P(Q), where A \in Q, a \in T, and P(Q) is a powerset of states,
+ * F (FinalStates) = set of final states
  *
  * \tparam SymbolType used for the terminal alphabet
  * \tparam StateType used to the states, and the initial state of the automaton.
-- 
GitLab