/*
 * ToRegExpAlgebraic.h
 *
 * This file is part of Algorithms library toolkit.
 * Copyright (C) 2017 Jan Travnicek (jan.travnicek@fit.cvut.cz)

 * Algorithms library toolkit is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.

 * Algorithms library toolkit is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with Algorithms library toolkit.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Created on: 11. 2. 2014
 *	  Author: Tomas Pecka
 */

#ifndef AUTOMATON_TO_REG_EXP_ALGEBRAIC_H_
#define AUTOMATON_TO_REG_EXP_ALGEBRAIC_H_

#include <regexp/unbounded/UnboundedRegExp.h>

#include <automaton/FSM/DFA.h>
#include <automaton/FSM/NFA.h>
#include <automaton/FSM/MultiInitialStateNFA.h>
#include <automaton/FSM/EpsilonNFA.h>

#include <equations/RightRegularEquationSolver.h>
#include <regexp/unbounded/UnboundedRegExpElements.h>

namespace automaton {

namespace convert {

// http://cs.stackexchange.com/questions/2016/how-to-convert-finite-automata-to-regular-expressions
// https://github.com/ferno/greenery/blob/bcc0a136335edbe94cd7725fc6e8cce0268d850c/fsm.py

/**
 * Converts a finite automaton to a regular expression using using the Brzozowski's algebraic method (Melichar: Jazyky a překlady 2.122).
 * The algorithm creates a system of right regular equations that is then solved.
 * The regular expression is returned as regexp::UnboundedRegExp.
 */
class ToRegExpAlgebraic {
public:
	/**
	 * Performs the actual conversion.
	 * @param automaton The automaton that is to be converted to the regular expression.
	 * @return regular expression equivalent to the input @p automaton.
	 */
	template < class SymbolType, class EpsilonType, class StateType >
	static regexp::UnboundedRegExp < SymbolType > convert ( const automaton::EpsilonNFA < SymbolType, EpsilonType, StateType > & automaton );

	/**
	 * \overload
	 */
	template < class SymbolType, class StateType >
	static regexp::UnboundedRegExp < SymbolType > convert ( const automaton::MultiInitialStateNFA < SymbolType, StateType > & automaton );

	/**
	 * \overload
	 */
	template < class SymbolType, class StateType >
	static regexp::UnboundedRegExp < SymbolType > convert ( const automaton::NFA < SymbolType, StateType > & automaton );

	/**
	 * \overload
	 */
	template < class SymbolType, class StateType >
	static regexp::UnboundedRegExp < SymbolType > convert ( const automaton::DFA < SymbolType, StateType > & automaton );
};

template < class SymbolType, class EpsilonType, class StateType >
regexp::UnboundedRegExp < SymbolType > ToRegExpAlgebraic::convert ( const automaton::EpsilonNFA < SymbolType, EpsilonType, StateType > & automaton ) {
	equations::RightRegularEquationSolver < SymbolType, StateType > solver;

	// initialize equations
	solver.setVariableSymbols ( automaton.getStates ( ) );

	for ( const StateType & q : automaton.getFinalStates ( ) )
		solver.addEquation ( q, regexp::UnboundedRegExpEpsilon < SymbolType > { } );

	for ( const auto & p : automaton.getSymbolTransitions ( ) )
		for ( const StateType & q : p.second )
			solver.addEquation ( p.first.first, q, regexp::UnboundedRegExpSymbol < SymbolType > { p.first.second } );

	for( const auto & p : automaton.getEpsilonTransitions ( ) )
		for ( const StateType & q : p.second )
			solver.addEquation ( p.first, q, regexp::UnboundedRegExpEpsilon < SymbolType > { } );

	return solver.solve ( automaton.getInitialState ( ) );
}

template < class SymbolType, class StateType >
regexp::UnboundedRegExp < SymbolType > ToRegExpAlgebraic::convert ( const automaton::MultiInitialStateNFA < SymbolType, StateType > & automaton ) {
	equations::RightRegularEquationSolver < SymbolType, StateType > solver;

	// initialize equations
	solver.setVariableSymbols ( automaton.getStates ( ) );

	for ( const StateType & q : automaton.getFinalStates ( ) )
		solver.addEquation ( q, regexp::UnboundedRegExpEpsilon < SymbolType > { } );

	for ( const auto & p : automaton.getTransitions ( ) )
		for ( const StateType & q : p.second )
			solver.addEquation ( p.first.first, q, regexp::UnboundedRegExpSymbol < SymbolType > { p.first.second } );

	regexp::UnboundedRegExpAlternation < SymbolType > alternation;
	for ( const StateType & initialSymbol : automaton.getInitialStates ( ) )
		alternation.appendElement ( solver.solve ( initialSymbol ).getRegExp ( ).getStructure ( ) ); // set symbol for which the solver will solve equation system

	return regexp::UnboundedRegExp < SymbolType > { regexp::UnboundedRegExpStructure < SymbolType > ( alternation ) };
}

template < class SymbolType, class StateType >
regexp::UnboundedRegExp < SymbolType > ToRegExpAlgebraic::convert ( const automaton::NFA < SymbolType, StateType > & automaton ) {
	equations::RightRegularEquationSolver < SymbolType, StateType > solver;

	// initialize equations
	solver.setVariableSymbols ( automaton.getStates ( ) );

	for ( const StateType & q : automaton.getFinalStates ( ) )
		solver.addEquation ( q, regexp::UnboundedRegExpEpsilon < SymbolType > { } );

	for ( const auto & p : automaton.getTransitions ( ) )
		for ( const StateType & q : p.second )
			solver.addEquation ( p.first.first, q, regexp::UnboundedRegExpSymbol < SymbolType > { p.first.second } );

	return solver.solve ( automaton.getInitialState ( ) );
}

template < class SymbolType, class StateType >
regexp::UnboundedRegExp < SymbolType > ToRegExpAlgebraic::convert ( const automaton::DFA < SymbolType, StateType > & automaton ) {
	equations::RightRegularEquationSolver < SymbolType, StateType > solver;

	// initialize equations
	solver.setVariableSymbols ( automaton.getStates ( ) );

	for ( const StateType & q : automaton.getFinalStates ( ) )
		solver.addEquation ( q, regexp::UnboundedRegExpEpsilon < SymbolType > { } );

	for ( const auto & p : automaton.getTransitions ( ) )
		solver.addEquation ( p.first.first, p.second, regexp::UnboundedRegExpSymbol < SymbolType > { p.first.second } );

	return solver.solve ( automaton.getInitialState( ) );
}

} /* namespace convert */

} /* namespace automaton */

#endif /* AUTOMATON_TO_REG_EXP_ALGEBRAIC_H_ */