/* * ToRegExpAlgebraic.h * * This file is part of Algorithms library toolkit. * Copyright (C) 2017 Jan Travnicek (jan.travnicek@fit.cvut.cz) * Algorithms library toolkit is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * Algorithms library toolkit is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with Algorithms library toolkit. If not, see <http://www.gnu.org/licenses/>. * * Created on: 11. 2. 2014 * Author: Tomas Pecka */ #ifndef AUTOMATON_TO_REG_EXP_ALGEBRAIC_H_ #define AUTOMATON_TO_REG_EXP_ALGEBRAIC_H_ #include <regexp/unbounded/UnboundedRegExp.h> #include <automaton/FSM/DFA.h> #include <automaton/FSM/NFA.h> #include <automaton/FSM/MultiInitialStateNFA.h> #include <automaton/FSM/EpsilonNFA.h> #include <equations/RightRegularEquationSolver.h> #include <regexp/unbounded/UnboundedRegExpElements.h> namespace automaton { namespace convert { // http://cs.stackexchange.com/questions/2016/how-to-convert-finite-automata-to-regular-expressions // https://github.com/ferno/greenery/blob/bcc0a136335edbe94cd7725fc6e8cce0268d850c/fsm.py /** * Converts a finite automaton to a regular expression using using the Brzozowski's algebraic method (Melichar: Jazyky a překlady 2.122). * The algorithm creates a system of right regular equations that is then solved. * The regular expression is returned as regexp::UnboundedRegExp. */ class ToRegExpAlgebraic { public: /** * Performs the actual conversion. * @param automaton The automaton that is to be converted to the regular expression. * @return regular expression equivalent to the input @p automaton. */ template < class SymbolType, class EpsilonType, class StateType > static regexp::UnboundedRegExp < SymbolType > convert ( const automaton::EpsilonNFA < SymbolType, EpsilonType, StateType > & automaton ); /** * \overload */ template < class SymbolType, class StateType > static regexp::UnboundedRegExp < SymbolType > convert ( const automaton::MultiInitialStateNFA < SymbolType, StateType > & automaton ); /** * \overload */ template < class SymbolType, class StateType > static regexp::UnboundedRegExp < SymbolType > convert ( const automaton::NFA < SymbolType, StateType > & automaton ); /** * \overload */ template < class SymbolType, class StateType > static regexp::UnboundedRegExp < SymbolType > convert ( const automaton::DFA < SymbolType, StateType > & automaton ); }; template < class SymbolType, class EpsilonType, class StateType > regexp::UnboundedRegExp < SymbolType > ToRegExpAlgebraic::convert ( const automaton::EpsilonNFA < SymbolType, EpsilonType, StateType > & automaton ) { equations::RightRegularEquationSolver < SymbolType, StateType > solver; // initialize equations solver.setVariableSymbols ( automaton.getStates ( ) ); for ( const StateType & q : automaton.getFinalStates ( ) ) solver.addEquation ( q, regexp::UnboundedRegExpEpsilon < SymbolType > { } ); for ( const auto & p : automaton.getSymbolTransitions ( ) ) for ( const StateType & q : p.second ) solver.addEquation ( p.first.first, q, regexp::UnboundedRegExpSymbol < SymbolType > { p.first.second } ); for( const auto & p : automaton.getEpsilonTransitions ( ) ) for ( const StateType & q : p.second ) solver.addEquation ( p.first, q, regexp::UnboundedRegExpEpsilon < SymbolType > { } ); return solver.solve ( automaton.getInitialState ( ) ); } template < class SymbolType, class StateType > regexp::UnboundedRegExp < SymbolType > ToRegExpAlgebraic::convert ( const automaton::MultiInitialStateNFA < SymbolType, StateType > & automaton ) { equations::RightRegularEquationSolver < SymbolType, StateType > solver; // initialize equations solver.setVariableSymbols ( automaton.getStates ( ) ); for ( const StateType & q : automaton.getFinalStates ( ) ) solver.addEquation ( q, regexp::UnboundedRegExpEpsilon < SymbolType > { } ); for ( const auto & p : automaton.getTransitions ( ) ) for ( const StateType & q : p.second ) solver.addEquation ( p.first.first, q, regexp::UnboundedRegExpSymbol < SymbolType > { p.first.second } ); regexp::UnboundedRegExpAlternation < SymbolType > alternation; for ( const StateType & initialSymbol : automaton.getInitialStates ( ) ) alternation.appendElement ( solver.solve ( initialSymbol ).getRegExp ( ).getStructure ( ) ); // set symbol for which the solver will solve equation system return regexp::UnboundedRegExp < SymbolType > { regexp::UnboundedRegExpStructure < SymbolType > ( alternation ) }; } template < class SymbolType, class StateType > regexp::UnboundedRegExp < SymbolType > ToRegExpAlgebraic::convert ( const automaton::NFA < SymbolType, StateType > & automaton ) { equations::RightRegularEquationSolver < SymbolType, StateType > solver; // initialize equations solver.setVariableSymbols ( automaton.getStates ( ) ); for ( const StateType & q : automaton.getFinalStates ( ) ) solver.addEquation ( q, regexp::UnboundedRegExpEpsilon < SymbolType > { } ); for ( const auto & p : automaton.getTransitions ( ) ) for ( const StateType & q : p.second ) solver.addEquation ( p.first.first, q, regexp::UnboundedRegExpSymbol < SymbolType > { p.first.second } ); return solver.solve ( automaton.getInitialState ( ) ); } template < class SymbolType, class StateType > regexp::UnboundedRegExp < SymbolType > ToRegExpAlgebraic::convert ( const automaton::DFA < SymbolType, StateType > & automaton ) { equations::RightRegularEquationSolver < SymbolType, StateType > solver; // initialize equations solver.setVariableSymbols ( automaton.getStates ( ) ); for ( const StateType & q : automaton.getFinalStates ( ) ) solver.addEquation ( q, regexp::UnboundedRegExpEpsilon < SymbolType > { } ); for ( const auto & p : automaton.getTransitions ( ) ) solver.addEquation ( p.first.first, p.second, regexp::UnboundedRegExpSymbol < SymbolType > { p.first.second } ); return solver.solve ( automaton.getInitialState( ) ); } } /* namespace convert */ } /* namespace automaton */ #endif /* AUTOMATON_TO_REG_EXP_ALGEBRAIC_H_ */