Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/*
* ZeroRunLengthEncoding.hpp
*
* Created on: 23. 2. 2017
* Author: Jan Travnicek
*/
#ifndef ZERO_RUN_LENGTHPP_ENCODING_HPP_
#define ZERO_RUN_LENGTHPP_ENCODING_HPP_
#include <list>
/* Canonical representation kept by all operations is in form of blocks of pairs run and word, where each word must contain at least one set bit, with exception of the last word.
* Empty sequence of bits is represented by empty list of elements and size equal to zero.
* If the size of the representation is divisible by sizeof ( unsigned ) * 8 then the last block must either be of nonzero run or its word must contain at least one set bit. This is not with contradiction with the first line.
*
* Examples:
* least significant bit
* v
* size = 32 [(0, 00000000000000000000000000000000)] is representing 32 times zero
* size = 32 [(0, 00000000000000000000000000000001)] is representing 31 times zero and one
* size = 33 [(1, 00000000000000000000000000000000)] is representing 31 times zero
* size = 64 [(0, 00000000000000000000000000000001), (0, 00000000000000000000000000000000)] is representing 31 times zero, one and 32 times zero
* */
namespace common {
class ZeroRunLengthEncoding {
struct element {
unsigned run;
unsigned word;
};
std::list < element > m_Data;
size_t m_Size;
static inline unsigned getMask ( size_t dist ) {
return ( ( 1u ) << dist ) - 1;
}
void packData ( ) {
size_t sizeWithin = m_Size % ( sizeof ( unsigned ) * 8 );
long long sizeBlocks = m_Size / ( sizeof ( unsigned ) * 8 ) + ( bool ) sizeWithin;
unsigned mask = getMask ( sizeWithin );
// crop by size
std::list < element >::iterator elementIter;
for ( elementIter = m_Data.begin ( ); elementIter != m_Data.end ( ); ++ elementIter ) {
sizeBlocks -= elementIter->run + 1;
if ( sizeBlocks <= 0 )
break;
}
if ( sizeBlocks == 0 ) { // sizeBlocks is negative or 0
if ( mask != 0 )
elementIter->word &= mask;
++ elementIter;
} else {
elementIter->run += sizeBlocks; //sizeBlocks is negative
elementIter->word = 0;
++ elementIter;
}
for ( ; elementIter != m_Data.end ( ); ++ elementIter ) {
m_Data.erase ( elementIter );
}
// erase not needed blocks
unsigned runCarry = 0;
for ( elementIter = m_Data.begin ( ); elementIter != m_Data.end ( ); ++ elementIter ) {
while ( elementIter->word == 0 && std::next ( elementIter ) != m_Data.end ( ) ) {
runCarry += elementIter->run + 1;
elementIter = m_Data.erase ( elementIter );
}
elementIter->run += runCarry;
runCarry = 0;
}
}
public:
ZeroRunLengthEncoding ( ) : m_Size ( 0 ) { }
ZeroRunLengthEncoding ( const std::vector < bool > & raw ) : m_Size ( 0 ) {
for ( bool boolean : raw ) {
push_back ( boolean );
}
}
void push_back ( bool boolean ) {
size_t sizeWithin = m_Size % ( sizeof ( unsigned ) * 8 );
if ( m_Data.size ( ) == 0 ) {
m_Data.push_back ( element { 0, 0 } );
} else if ( sizeWithin == 0 && m_Data.back ( ).word == 0 ) {
m_Data.back ( ).run += 1;
} else if ( sizeWithin == 0 && m_Data.back ( ).word != 0 ) {
m_Data.push_back ( element { 0, 0 } );
}
m_Data.back ( ).word |= boolean << sizeWithin;
m_Size += 1;
}
operator std::vector < bool > ( ) const {
std::vector < bool > res;
for ( const element & elem : m_Data ) {
for ( unsigned i = 0; i < elem.run ; ++i )
for ( unsigned j = 0; j < sizeof ( unsigned ) * 8; ++j )
res.push_back ( false );
for ( unsigned i = 0; i < sizeof ( unsigned ) * 8; ++i ) {
res.push_back ( elem.word & 1 << i );
}
}
res.resize ( m_Size );
return res;
}
const std::list < element > & data ( ) {
return m_Data;
}
void resize ( size_t size ) {
m_Size = size;
packData ( );
}
friend ZeroRunLengthEncoding & operator <<= ( ZeroRunLengthEncoding & A, size_t dist ) {
if ( A.m_Size == 0 || dist == 0 )
return A;
size_t distBlocks = dist / ( sizeof ( unsigned ) * 8 );
size_t distWithin = dist % ( sizeof ( unsigned ) * 8 );
size_t backDist = sizeof ( unsigned ) * 8 - distWithin;
// shift by block
A.m_Data.front ( ).run += distBlocks;
if ( distWithin == 0 ) {
A.packData ( );
return A;
}
unsigned shiftedWord = 0;
for ( auto elementIter = A.m_Data.begin ( ); elementIter != A.m_Data.end ( ); ++ elementIter ) {
if ( shiftedWord != 0 && elementIter->run != 0 ) {
// shift into new block borrow from this run
elementIter->run -= 1;
elementIter = A.m_Data.insert ( elementIter, element { 0, shiftedWord } );
shiftedWord = 0;
} else {
unsigned tmp = elementIter->word >> backDist;
elementIter->word = elementIter->word << distWithin | shiftedWord;
shiftedWord = tmp;
}
}
A.packData ( );
return A;
}
friend ZeroRunLengthEncoding operator << ( ZeroRunLengthEncoding A, size_t dist ) {
A <<= dist;
return A;
}
friend std::ostream & operator << ( std::ostream & out, const common::ZeroRunLengthEncoding::element & elem ) {
out << "(" << elem.run << ", ";
for ( unsigned i = 0; i < sizeof ( elem.word ) * 8; ++ i )
out << (bool) ( elem.word & 1 << i );
out << ")";
return out;
}
};
} /* namespace common */
#endif /* ZERO_RUN_LENGTHPP_ENCODING_HPP_ */