Newer
Older
/*
* RegularEquationSolver.h
*
* Created on: 4. 3. 2014
#ifndef REGULAR_EQUATIONS_SOLVER_H_
#define REGULAR_EQUATIONS_SOLVER_H_
#include <map>
#include <deque>
#include <queue>
#include <exception/CommonException.h>
#include <regexp/unbounded/UnboundedRegExp.h>
#include <regexp/unbounded/UnboundedRegExpElement.h>
#include <regexp/unbounded/UnboundedRegExpElements.h>
namespace equations {
/**
* Base class for regular equations solvers.
*/
public:
/**
* Adds nonterminal symbol into system.
*
* @param symb given symbol
/**
* Removes nonterminal symbol from equation system.
*
* @param symb given symbol
* @throws CommonException when symbol is in use
/**
* Sets nonterminal symbols of the equation system.
* @param symbol Symbols to set
void setSymbols(const ext::set<SymbolType>& symbols);
/**
* Adds equation in form FROM = eq TO
*
* @param from symbol
* @param to symbol
* @param eq equation
*/
void addEquation(const SymbolType& from, const SymbolType& to, const regexp::UnboundedRegExpElement < SymbolType > & eq);
/**
* Adds equation in form: FROM = eq
*
* @param from
* @param eq
*/
void addEquation(const SymbolType& from, const regexp::UnboundedRegExpElement < SymbolType > & eq);
/**
* Solve expression system
*
* @param solveFor will solve equation system for given symbol
* @return regexp
*/
regexp::UnboundedRegExp < SymbolType > solve(const SymbolType& solveFor);
protected:
/**
* actual equations elimination
* @return pointer to solutions RegExp tree root
*/
virtual regexp::UnboundedRegExp < SymbolType > eliminate(void) = 0;
* Runs BFS to determine depth of symbols in equation system and stores it in nonterminalSymbolsByDepth;
* @see nonterminalSymbolsByDepth
void sortSymbolsByDepth(const SymbolType& solveFor);
/**
* @see symbolsByDepth
*/
ext::deque<SymbolType> nonterminalSymbolsByDepth;
/**
* Stores transitions from nonterminal to nonterminal, eg A = 2A + 2B + 1C
*/
ext::map<std::pair<SymbolType, SymbolType>, regexp::UnboundedRegExpAlternation < SymbolType > > equationTransition;
/**
* Stores equation not going to particular nonterminal, eg A = 01*
*/
ext::map<SymbolType, regexp::UnboundedRegExpAlternation < SymbolType > > equationFinal;
/**
* Set of symbols
*/
void RegularEquationSolver < SymbolType >::setSymbols(const ext::set<SymbolType>& newSymbols) {
ext::set<SymbolType> removed, added;
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
std::set_difference(nonterminalSymbols.begin(), nonterminalSymbols.end(), newSymbols.begin(), newSymbols.end(), std::inserter(removed, removed.end()));
std::set_difference(newSymbols.begin(), newSymbols.end(), nonterminalSymbols.begin(), nonterminalSymbols.end(), std::inserter(added, added.end()));
for(const auto& symb : removed) {
removeSymbol(symb);
}
for(const auto& symb : added) {
addSymbol(symb);
}
}
template < class SymbolType >
void RegularEquationSolver < SymbolType >::removeSymbol(const SymbolType& symb) {
for(const auto& kv : equationTransition) {
const SymbolType& from = kv.first.first;
const SymbolType& to = kv.first.second;
const regexp::UnboundedRegExpAlternation < SymbolType > & alt = kv.second;
if((from == symb || to == symb) && alt.getElements().size() != 0) {
throw exception::CommonException("Symbol '" + (std::string) symb + "' is in use.");
}
}
for(const auto& kv : equationFinal) {
const SymbolType& from = kv.first;
const regexp::UnboundedRegExpAlternation < SymbolType > & alt = kv.second;
if(from == symb && alt.getElements().size() != 0) {
throw exception::CommonException("Symbol '" + (std::string) from + "' is in use.");
}
}
nonterminalSymbols.erase(nonterminalSymbols.find(symb));
equationFinal.erase(equationFinal.find(symb));
for(const auto& s : nonterminalSymbols) {
equationTransition.erase(equationTransition.find(std::make_pair(s, symb)));
equationTransition.erase(equationTransition.find(std::make_pair(symb, s)));
}
equationTransition.erase(equationTransition.find(std::make_pair(symb, symb)));
}
template < class SymbolType >
void RegularEquationSolver < SymbolType >::addSymbol(const SymbolType& symb) {
for(const auto& s : nonterminalSymbols) {
equationTransition.insert(std::make_pair(std::make_pair(symb, s), regexp::UnboundedRegExpAlternation < SymbolType > { }));
equationTransition.insert(std::make_pair(std::make_pair(s, symb), regexp::UnboundedRegExpAlternation < SymbolType > { }));
}
equationTransition.insert(std::make_pair(std::make_pair(symb, symb), regexp::UnboundedRegExpAlternation < SymbolType > { }));
nonterminalSymbols.insert(symb);
equationFinal.insert(std::make_pair(symb, regexp::UnboundedRegExpAlternation < SymbolType > { }));
}
template < class SymbolType >
void RegularEquationSolver < SymbolType >::addEquation(const SymbolType& from, const SymbolType& to, const regexp::UnboundedRegExpElement < SymbolType > & eq) {
if(nonterminalSymbols.count(from) == 0) {
throw exception::CommonException("Symbol from ('" + (std::string) from + "') is not in equation system.");
}
if(nonterminalSymbols.count(to) == 0) {
throw exception::CommonException("Symbol to ('" + (std::string) to + "') is not in equation system.");
}
equationTransition.find(std::make_pair(from, to))->second.appendElement(eq);
}
template < class SymbolType >
void RegularEquationSolver < SymbolType >::addEquation(const SymbolType& from, const regexp::UnboundedRegExpElement < SymbolType > & eq) {
if(nonterminalSymbols.count(from) == 0) {
throw exception::CommonException("Symbol from ('" + (std::string) from + "') is not in equation system.");
}
equationFinal.find(from)->second.appendElement(eq);
}
template < class SymbolType >
void RegularEquationSolver < SymbolType >::sortSymbolsByDepth(const SymbolType& solveFor) {
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
std::queue<SymbolType> queue;
for(const auto& symbol : nonterminalSymbols) {
visited[symbol] = false;
}
visited[solveFor] = true;
queue.push(solveFor);
while(! queue.empty()) {
SymbolType s = queue.front();
queue.pop();
nonterminalSymbolsByDepth.push_back(s);
for(const auto& kv : equationTransition) {
// find all transitions from current symbol that are non-empty, enqueue transition's target symbol
if(kv.first.first == s && visited[ kv.first.second ] == false && kv.second.getElements().size() > 0) {
visited[kv.first.second] = true;
queue.push(kv.first.second);
}
}
}
}
template < class SymbolType >
regexp::UnboundedRegExp < SymbolType > RegularEquationSolver < SymbolType >::solve(const SymbolType& solveFor) {
if(nonterminalSymbols.count(solveFor) == 0) {
throw exception::CommonException("Symbol solveFor ('" + (std::string) solveFor + "') is not in equation system.");
}
/*
* Firstly, organize states by depth so we can output better looking
* expressions. We need to solve equation system for automaton's initial state,
* so lets start with the deepest ones and walk towards the initial one.
*/
sortSymbolsByDepth(solveFor);
return eliminate();
}