Skip to content
Snippets Groups Projects
EpsilonNFTA.h 34.1 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
/*
 * This file is part of Algorithms library toolkit.
 * Copyright (C) 2017 Jan Travnicek (jan.travnicek@fit.cvut.cz)

 * Algorithms library toolkit is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.

 * Algorithms library toolkit is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with Algorithms library toolkit.  If not, see <http://www.gnu.org/licenses/>.
 */

#pragma once

#include <ostream>
#include <sstream>

#include <alib/multimap>
#include <alib/set>
#include <alib/vector>

#include <core/components.hpp>

#include <core/normalize.hpp>

#include <common/DefaultStateType.h>
#include <common/DefaultSymbolType.h>

#include <automaton/AutomatonException.h>

#include <core/normalize.hpp>
#include <alphabet/common/SymbolNormalize.h>
#include <automaton/common/AutomatonNormalize.h>

#include "DFTA.h"
#include "NFTA.h"

namespace automaton {

class InputAlphabet;
class States;
class FinalStates;

/**
 * \brief
 * Epsilon nondeterministic finite tree automaton. Accepts regular tree languages.

 * \details
 * Definition is classical definition of epsilon finite tree automata.
 * A = (Q, T, \delta, F),
 * Q (States) = nonempty finite set of states,
 * T (TerminalAlphabet) = finite set of terminal ranked symbols - having this empty won't let automaton do much though,
 * \delta = transition function of the form ( (A, B, C, ...) \times a) \cup A \times \epsilon -> P(Q), where A, B, C, ... \in Q, a \in T, and P(Q) is a powerset of states,
 * F (FinalStates) = set of final states
 *
 * Elements of the \delta multimapping must meet following criteria. The size of the state list must equal the rank of the ranked symbol from the non-epsilon transition.
 *
 * \tparam SymbolTypeT used for the symbol part of the ranked symbol
 * \tparam StateTypeT used to the states, and the initial state of the automaton.
 */
template < class SymbolTypeT = DefaultSymbolType, class StateTypeT = DefaultStateType >
class EpsilonNFTA final : public core::Components < EpsilonNFTA < SymbolTypeT, StateTypeT >, ext::set < common::ranked_symbol < SymbolTypeT > >, component::Set, InputAlphabet, ext::set < StateTypeT >, component::Set, std::tuple < States, FinalStates > > {
public:
	typedef SymbolTypeT SymbolType;
	typedef StateTypeT StateType;

private:
	/**
	 * Transition function as multimapping from a list of states times an input symbol or just a state on the left hand side to states on the right hand side.
	 */
	ext::multimap < ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > transitions;

public:
	/**
	 * \brief Creates a new instance of the automaton.
	 */
	explicit EpsilonNFTA ( );

	/**
	 * \brief Creates a new instance of the automaton with a concrete set of states, input alphabet, and  a set of final states.
	 *
	 * \param states the initial set of states of the automaton
	 * \param inputAlphabet the initial input alphabet
	 * \param finalStates the initial set of final states of the automaton
	 */
	explicit EpsilonNFTA ( ext::set < StateType > states, ext::set < common::ranked_symbol < SymbolType > > inputAlphabet, ext::set < StateType > finalStates );

	/*
	 * \brief Creates a new instance of the automaton based on the Deterministic finite tree automaton.
	 *
	 * \param other the Deterministic finite tree automaton
	 */
	explicit EpsilonNFTA ( const NFTA < SymbolType, StateType > & other );

	/*
	 * \brief Creates a new instance of the automaton based on the Deterministic finite tree automaton.
	 *
	 * \param other the Deterministic finite tree automaton
	 */
	explicit EpsilonNFTA ( const DFTA < SymbolType, StateType > & other );

	/**
	 * Getter of states.
	 *
	 * \returns the states of the automaton
	 */
	const ext::set < StateType > & getStates ( ) const & {
		return this->template accessComponent < States > ( ).get ( );
	}

	/**
	 * Getter of states.
	 *
	 * \returns the states of the automaton
	 */
	ext::set < StateType > && getStates ( ) && {
		return std::move ( this->template accessComponent < States > ( ).get ( ) );
	}

	/**
	 * Adder of a state.
	 *
	 * \param state the new state to be added to a set of states
	 *
	 * \returns true if the state was indeed added
	 */
	bool addState ( StateType state ) {
		return this->template accessComponent < States > ( ).add ( std::move ( state ) );
	}

	/**
	 * Setter of states.
	 *
	 * \param states completely new set of states
	 */
	void setStates ( ext::set < StateType > states ) {
		this->template accessComponent < States > ( ).set ( std::move ( states ) );
	}

	/**
	 * Remover of a state.
	 *
	 * \param state a state to be removed from a set of states
	 *
	 * \returns true if the state was indeed removed
	 */
	void removeState ( const StateType & state ) {
		this->template accessComponent < States > ( ).remove ( state );
	}

	/**
	 * Getter of final states.
	 *
	 * \returns the final states of the automaton
	 */
	const ext::set < StateType > & getFinalStates ( ) const & {
		return this->template accessComponent < FinalStates > ( ).get ( );
	}

	/**
	 * Getter of final states.
	 *
	 * \returns the final states of the automaton
	 */
	ext::set < StateType > && getFinalStates ( ) && {
		return std::move ( this->template accessComponent < FinalStates > ( ).get ( ) );
	}

	/**
	 * Adder of a final state.
	 *
	 * \param state the new state to be added to a set of final states
	 *
	 * \returns true if the state was indeed added
	 */
	bool addFinalState ( StateType state ) {
		return this->template accessComponent < FinalStates > ( ).add ( std::move ( state ) );
	}

	/**
	 * Setter of final states.
	 *
	 * \param states completely new set of final states
	 */
	void setFinalStates ( ext::set < StateType > states ) {
		this->template accessComponent < FinalStates > ( ).set ( std::move ( states ) );
	}

	/**
	 * Remover of a final state.
	 *
	 * \param state a state to be removed from a set of final states
	 *
	 * \returns true if the state was indeed removed
	 */
	void removeFinalState ( const StateType & state ) {
		this->template accessComponent < FinalStates > ( ).remove ( state );
	}

	/**
	 * Getter of the input alphabet.
	 *
	 * \returns the input alphabet of the automaton
	 */
	const ext::set < common::ranked_symbol < SymbolType > > & getInputAlphabet ( ) const & {
		return this->template accessComponent < InputAlphabet > ( ).get ( );
	}

	/**
	 * Getter of the input alphabet.
	 *
	 * \returns the input alphabet of the automaton
	 */
	ext::set < common::ranked_symbol < SymbolType > > && getInputAlphabet ( ) && {
		return std::move ( this->template accessComponent < InputAlphabet > ( ).get ( ) );
	}

	/**
	 * Adder of a input symbol.
	 *
	 * \param symbol the new symbol to be added to an input alphabet
	 *
	 * \returns true if the symbol was indeed added
	 */
	bool addInputSymbol ( common::ranked_symbol < SymbolType > symbol ) {
		return this->template accessComponent < InputAlphabet > ( ).add ( std::move ( symbol ) );
	}

	/**
	 * Adder of input symbols.
	 *
	 * \param symbols new symbols to be added to an input alphabet
	 */
	void addInputSymbols ( ext::set < common::ranked_symbol < SymbolType > > symbols ) {
		this->template accessComponent < InputAlphabet > ( ).add ( std::move ( symbols ) );
	}

	/**
	 * Setter of input alphabet.
	 *
	 * \param symbols completely new input alphabet
	 */
	void setInputAlphabet ( ext::set < common::ranked_symbol < SymbolType > > symbols ) {
		this->template accessComponent < InputAlphabet > ( ).set ( std::move ( symbols ) );
	}

	/**
	 * Remover of an input symbol.
	 *
	 * \param symbol a symbol to be removed from an input alphabet
	 *
	 * \returns true if the symbol was indeed removed
	 */
	void removeInputSymbol ( const common::ranked_symbol < SymbolType > & symbol ) {
		this->template accessComponent < InputAlphabet > ( ).remove ( symbol );
	}

	/**
	 * \brief Add a transition to the automaton.
	 *
	 * \details The transition is either in a form ( A, B, C, ... ) \times a -> X, where A, B, C, ..., X \in Q and a \in T
	 *                                   or a form A \times \epsilon -> B, where A, B \in Q
	 *
	 * \param lhs the left hand side of the transitions
	 * \param rhs the right hand side of the transitions
	 *
	 * \throws AutomatonException when transition contains state or symbol not present in the automaton components
	 *
	 * \returns true if the transition was indeed added
	 */
	bool addTransition ( ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > lhs, StateType rhs );

	/**
	 * \brief Add a transition to the automaton.
	 *
	 * \details The transition is in a form ( A, B, C, ... ) \times a -> X, where A, B, C, ..., X \in Q and a \in T
	 *
	 * \param symbol the input symbol (a)
	 * \param prevStates the source states (A, B, C, ...)
	 * \param next the target state (B)
	 *
	 * \throws AutomatonException when transition contains state or symbol not present in the automaton components
	 *
	 * \returns true if the transition was indeed added
	 */
	bool addTransition ( common::ranked_symbol < SymbolType > symbol, ext::vector < StateType > prevStates, StateType next );

	/**
	 * \brief Add a transition to the automaton.
	 *
	 * \details The transition is in a form A \times \epsilon -> B, where A, B \in Q
	 *
	 * \param from the source state (A)
	 * \param to the target state (B)
	 *
	 * \throws AutomatonException when transition contains state or symbol not present in the automaton components
	 *
	 * \returns true if the transition was indeed added
	 */
	bool addTransition ( StateType from, StateType to );

	/**
	 * \brief Removes a transition from the automaton.
	 *
	 * \details The transition is either in a form ( A, B, C, ... ) \times a -> X, where A, B, C, ..., X \in Q and a \in T
	 *                                   or a form A \times \epsilon -> B, where A, B \in Q
	 *
	 * \param lhs the left hand side of the transitions
	 * \param rhs the right hand side of the transitions
	 *
	 * \returns true if the transition was indeed removed
	 */
	bool removeTransition ( const ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > & lhs, const StateType & rhs );

	/**
	 * \brief Removes a transition from the automaton.
	 *
	 * \details The transition is in a form ( A, B, C, ... ) \times a -> X, where A, B, C, ..., X \in Q and a \in T
	 *
	 * \param symbol the input symbol (a)
	 * \param prevStates the source states (A, B, C, ...)
	 * \param next the target state (B)
	 *
	 * \returns true if the transition was indeed removed
	 */
	bool removeTransition ( const common::ranked_symbol < SymbolType > & symbol, const ext::vector < StateType > & prevStates, const StateType & next );

	/**
	 * \brief Removes a transition from the automaton.
	 *
	 * \details The transition is in a form A \times \epsilon -> B, where A, B \in Q
	 *
	 * \param from the source state (A)
	 * \param to the target state (B)
	 *
	 * \returns true if the transition was indeed removed
	 */
	bool removeTransition ( const StateType & from, const StateType & to );

	/**
	 * Get the transition function of the automaton in its natural form.
	 *
	 * \returns transition function of the automaton
	 */
	const ext::multimap < ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > & getTransitions ( ) const & {
		return transitions;
	}

	/**
	 * Get the transition function of the automaton in its natural form.
	 *
	 * \returns transition function of the automaton
	 */
	ext::multimap < ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > && getTransitions ( ) && {
		return std::move ( transitions );
	}

	/**
	 * Get the epsilon transitions of the automaton
	 *
	 * \returns epsilon transitions of the automaton
	 */
	ext::multimap < StateType, StateType > getEpsilonTransitions ( ) const;

	/**
	 * Get the non-epsilon transitions of the automaton
	 *
	 * \returns non-epsilon transitions of the automaton
	 */
	ext::multimap < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > >, StateType > getSymbolTransitions ( ) const;

	/**
	 * \returns transitions to state @p q
	 */
	ext::multimap < ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > getTransitionsToState ( const StateType & q ) const {
		ext::multimap < ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > res;

		for ( const auto & transition : getTransitions ( ) )
			if ( transition.second == q )
				res.insert ( transition );

		return res;
	}

	/**
	 * \returns transitions from state @p q
	 */
	ext::multimap < ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > getTransitionsFromState ( const StateType & q ) const {
		ext::multimap < ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > res;

		for ( const auto & transition : getTransitions ( ) ) {
			if ( transition.first.template is < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( ) ) {
				const ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > & source = transition.first.template get < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( );
				if ( std::find ( source.second.begin ( ), source.second.end ( ), q ) != source.second.end ( ) ) {
					res.insert ( transition );
				}
			}
			if ( transition.first.template is < StateType > ( ) ) {
				const StateType & source = transition.first.template get < StateType > ( );
				if ( source == q ) {
					res.insert ( transition );
				}
			}
		}

		return res;
	}

	/**
	 * Get a subset of epsilon transitions of the automaton, with the source state fixed in the transitions natural representation.
	 *
	 * \param from filter the transition function based on this state as a source state
	 *
	 * \returns a subset of epsilon transitions of the automaton with the source state fixed
	 */
	ext::multimap < StateType, StateType > getEpsilonTransitionsFromState ( const StateType & from ) const;

	/**
	 * Get a subset of epsilon transitions of the automaton, with the target state fixed in the transitions natural representation.
	 *
	 * \param to filter the transition function based on this state as a source state
	 *
	 * \returns a subset of epsilon transitions of the automaton with the target state fixed
	 */
	ext::multimap < StateType, StateType > getEpsilonTransitionsToState ( const StateType & to ) const;

	/**
	 * \brief Determines whether the automaton is without epsilon transitions.
	 *
	 * \return true when automaton doesn't contain epsilon transitions, false otherwise
	 */
	bool isEpsilonFree ( ) const;

	/**
	 * \brief Determines whether the automaton is deterministic.
	 *
	 * the automaton is deterministic if and only if:
	 * \li \c size of transition function \delta (from states, input symbol) \leq 1
	 *
	 * \return true if the automaton is deterministic, false otherwise
	 */
	bool isDeterministic ( ) const;

	/**
	 * The three way comparison implementation
	 *
	 * \param other the other instance
	 *
	 * \returns the ordering between this object and the @p other.
	 */
	auto operator <=> ( const EpsilonNFTA & other ) const {
		return std::tie(getStates(), getInputAlphabet(), getFinalStates(), transitions) <=> std::tie(other.getStates(), other.getInputAlphabet(), other.getFinalStates(), other.transitions);
	}

	/**
	 * The equality comparison implementation.
	 *
	 * \param other the other object to compare with.
	 *
	 * \returns true if this and other objects are equal, false othervise
	 */
	bool operator == ( const EpsilonNFTA & other ) const {
		return std::tie(getStates(), getInputAlphabet(), getFinalStates(), transitions) == std::tie(other.getStates(), other.getInputAlphabet(), other.getFinalStates(), other.transitions);
	}

	/**
	 * Print this object as raw representation to ostream.
	 *
	 * \param out ostream where to print
	 * \param instance object to print
	 *
	 * \returns modified output stream
	 */
	friend std::ostream & operator << ( std::ostream & out, const EpsilonNFTA & instance ) {
		return out << "(EpsilonNFTA "
			   << " states = " << instance.getStates ( )
			   << " inputAlphabet = " << instance.getInputAlphabet ( )
			   << " finalStates = " << instance.getFinalStates ( )
			   << " transitions = " << instance.getTransitions ( )
			   << ")";
	}

	/**
	 * Casts this instance to as compact as possible string representation.
	 *
	 * \returns string representation of the object
	 */
	operator std::string ( ) const;
};

/**
 * Trait to detect whether the type parameter T is or is not EpsilonNFTA. Derived from std::false_type.
 *
 * \tparam T the tested type parameter
 */
template < class T >
class isEpsilonNFTA_impl : public std::false_type {};

/**
 * Trait to detect whether the type parameter T is or is not DFA. Derived from std::true_type.
 *
 * Specialisation for EpsilonNFTA.
 *
 * \tparam SymbolType used for the terminal alphabet of the automaton
 * \tparam StateType used for the terminal alphabet of the automaton
 */
template < class SymbolType, class StateType >
class isEpsilonNFTA_impl < EpsilonNFTA < SymbolType, StateType > > : public std::true_type {};

/**
 * Constexpr true if the type parameter T is EpsilonNFTA, false otherwise.
 *
 * \tparam T the tested type parameter
 */
template < class T >
constexpr bool isEpsilonNFTA = isEpsilonNFTA_impl < T > { };

template < class SymbolType, class StateType >
EpsilonNFTA < SymbolType, StateType >::EpsilonNFTA ( ext::set < StateType > states, ext::set < common::ranked_symbol < SymbolType > > inputAlphabet, ext::set < StateType > finalStates ) : core::Components < EpsilonNFTA, ext::set < common::ranked_symbol < SymbolType > >, component::Set, InputAlphabet, ext::set < StateType >, component::Set, std::tuple < States, FinalStates > > ( std::move ( inputAlphabet ), std::move ( states ), std::move ( finalStates ) ) {
}

template < class SymbolType, class StateType >
EpsilonNFTA < SymbolType, StateType >::EpsilonNFTA() : EpsilonNFTA ( ext::set < StateType > { }, ext::set < common::ranked_symbol < SymbolType > > { }, ext::set < StateType > { } ) {
}

template < class SymbolType, class StateType >
EpsilonNFTA < SymbolType, StateType >::EpsilonNFTA(const NFTA < SymbolType, StateType > & other) : EpsilonNFTA ( other.getStates(), other.getInputAlphabet(), other.getFinalStates() ) {
	transitions.insert ( other.getTransitions ( ).begin ( ), other.getTransitions ( ).end ( ) );
}

template < class SymbolType, class StateType >
EpsilonNFTA < SymbolType, StateType >::EpsilonNFTA(const DFTA < SymbolType, StateType > & other) : EpsilonNFTA ( other.getStates(), other.getInputAlphabet(), other.getFinalStates() ) {
	transitions.insert ( other.getTransitions ( ).begin ( ), other.getTransitions ( ).end ( ) );
}

template < class SymbolType, class StateType >
bool EpsilonNFTA < SymbolType, StateType >::addTransition ( ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > lhs, StateType rhs ) {
	if ( lhs.template is < StateType > ( ) ) {
		const StateType & source = lhs.template get < StateType > ( );
		if ( ! getStates().contains ( source ) )
			throw AutomatonException("State \"" + ext::to_string ( source ) + "\" doesn't exist.");
	} else {
		const ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > & source = lhs.template get < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( );
		if ( source.second.size ( ) != source.first.getRank ( ) )
			throw AutomatonException("Number of states doesn't match rank of the symbol");

		if ( ! getInputAlphabet ( ).contains ( source.first ) )
			throw AutomatonException("Input symbol \"" + ext::to_string ( source.first ) + "\" doesn't exist.");

		for ( const StateType & it : source.second ) {
			if ( ! getStates ( ).contains ( it ) )
				throw AutomatonException("State \"" + ext::to_string ( it ) + "\" doesn't exist.");
		}
	}

	if ( ! getStates().contains ( rhs ) )
		throw AutomatonException("State \"" + ext::to_string ( rhs ) + "\" doesn't exist.");

	auto upper_bound = transitions.upper_bound ( lhs );
	auto lower_bound = transitions.lower_bound ( lhs );
	auto iter = std::lower_bound ( lower_bound, upper_bound, rhs, [ ] ( const auto & transition, const auto & target ) { return transition.second < target; } );
	if ( iter != upper_bound && rhs >= iter->second )
		return false;

	transitions.insert ( iter, std::make_pair ( std::move ( lhs ), std::move ( rhs ) ) );
	return true;
}

template < class SymbolType, class StateType >
bool EpsilonNFTA < SymbolType, StateType >::addTransition ( common::ranked_symbol < SymbolType > symbol, ext::vector<StateType> prevStates, StateType next) {
	return addTransition ( ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( ext::make_pair ( std::move ( symbol ), std::move ( prevStates ) ) ), std::move ( next ) );
}

template < class SymbolType, class StateType >
bool EpsilonNFTA < SymbolType, StateType >::addTransition ( StateType from, StateType to) {
	return addTransition ( ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( std::move ( from ) ), std::move ( to ) );
}

template < class SymbolType, class StateType >
bool EpsilonNFTA < SymbolType, StateType >::removeTransition ( const ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > & lhs, const StateType & rhs) {
	auto upper_bound = transitions.upper_bound ( lhs );
	auto lower_bound = transitions.lower_bound ( lhs );
	auto iter = std::find_if ( lower_bound, upper_bound, [ & ] ( const auto & transition ) { return transition.second == rhs; } );
	if ( iter == upper_bound )
		return false;

	transitions.erase ( iter );
	return true;
}

template < class SymbolType, class StateType >
bool EpsilonNFTA < SymbolType, StateType >::removeTransition ( const common::ranked_symbol < SymbolType > & symbol, const ext::vector < StateType > & prevStates, const StateType & next ) {
	return removeTransition ( ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( ext::make_pair ( std::move ( symbol ), std::move ( prevStates ) ) ), std::move ( next ) );
}

template < class SymbolType, class StateType >
bool EpsilonNFTA < SymbolType, StateType >::removeTransition ( const StateType & from, const StateType & to ) {
	return removeTransition ( ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( std::move ( from ) ), std::move ( to ) );
}

template<class SymbolType, class StateType >
ext::multimap < StateType, StateType > EpsilonNFTA < SymbolType, StateType >::getEpsilonTransitions ( ) const {
	ext::multimap < StateType, StateType > result;

	for ( const std::pair < const ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > & transition : transitions )
		if ( transition.first.template is < StateType > ( ) )
			result.insert ( transition.first.template get < StateType > ( ), transition.second );

	return result;
}

template<class SymbolType, class StateType >
ext::multimap < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > >, StateType > EpsilonNFTA < SymbolType, StateType >::getSymbolTransitions ( ) const {
	ext::multimap < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > >, StateType > result;

	for ( const std::pair < const ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > & transition : transitions ) {
		if ( transition.first.template is < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( ) ) {
			const ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > & source = transition.first.template get < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( );
			result.insert ( source, transition.second );
		}
	}

	return result;
}

template<class SymbolType, class StateType >
ext::multimap < StateType, StateType > EpsilonNFTA < SymbolType, StateType >::getEpsilonTransitionsFromState ( const StateType & from ) const {
	if ( !getStates ( ).contains ( from ) )
		throw AutomatonException ( "State \"" + ext::to_string ( from ) + "\" doesn't exist" );

	ext::multimap < StateType, StateType > res;
	for ( const auto & transition : transitions.equal_range ( from ) )
		res.insert ( from, transition.second );

	return res;
}

template<class SymbolType, class StateType >
ext::multimap < StateType, StateType > EpsilonNFTA < SymbolType, StateType >::getEpsilonTransitionsToState ( const StateType & to ) const {
	if ( !getStates ( ).contains ( to ) )
		throw AutomatonException ( "State \"" + ext::to_string ( to ) + "\" doesn't exist" );

	ext::multimap < StateType, StateType > res;
	for ( const auto & transition : transitions )
		if ( transition.second == to && transition.first.template is < StateType > ( ) )
			res.insert ( transition.first.template get < StateType > ( ), to );

	return res;
}

template<class SymbolType, class StateType >
bool EpsilonNFTA < SymbolType, StateType >::isEpsilonFree ( ) const {
	for ( const std::pair < const ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > & transition : transitions )
		if ( transition.first.template is < StateType > ( ) )
			return false;

	return true;
}

template < class SymbolType, class StateType >
bool EpsilonNFTA < SymbolType, StateType >::isDeterministic() const {
	if ( transitions.empty ( ) )
		return true;

	for ( auto iter = transitions.begin ( ); std::next ( iter ) != transitions.end ( ); ++ iter )
		if ( iter->first == std::next ( iter )->first )
			return false;

	return isEpsilonFree ( );
}

template < class SymbolType, class StateType >
EpsilonNFTA < SymbolType, StateType >::operator std::string ( ) const {
	std::stringstream ss;
	ss << *this;
	return ss.str();
}

} /* namespace automaton */

namespace core {

/**
 * Helper class specifying constraints for the automaton's internal input alphabet component.
 *
 * \tparam SymbolType used for the symbol part of the ranked symbol
 * \tparam StateType used for the terminal alphabet of the automaton.
 */
template < class SymbolType, class StateType >
class SetConstraint< automaton::EpsilonNFTA < SymbolType, StateType >, common::ranked_symbol < SymbolType >, automaton::InputAlphabet > {
public:
	/**
	 * Returns true if the symbol is still used in some transition of the automaton.
	 *
	 * \param automaton the tested automaton
	 * \param symbol the tested symbol
	 *
	 * \returns true if the symbol is used, false othervise
	 */
	static bool used ( const automaton::EpsilonNFTA < SymbolType, StateType > & automaton, const common::ranked_symbol < SymbolType > & symbol ) {
		for ( const std::pair < const ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > & t : automaton.getTransitions())
			if ( t.first.template is < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( ) ) {
				const ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > & source = t.first.template get < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( );
				if ( source.first == symbol)
					return true;
			}

		return false;
	}

	/**
	 * Returns true as all symbols are possibly available to be elements of the input alphabet.
	 *
	 * \param automaton the tested automaton
	 * \param symbol the tested symbol
	 *
	 * \returns true
	 */
	static bool available ( const automaton::EpsilonNFTA < SymbolType, StateType > &, const common::ranked_symbol < SymbolType > & ) {
		return true;
	}

	/**
	 * All symbols are valid as input symbols.
	 *
	 * \param automaton the tested automaton
	 * \param symbol the tested symbol
	 */
	static void valid ( const automaton::EpsilonNFTA < SymbolType, StateType > &, const common::ranked_symbol < SymbolType > & ) {
	}
};

/**
 * Helper class specifying constraints for the automaton's internal states component.
 *
 * \tparam SymbolType used for the symbol part of the ranked symbol
 * \tparam StateType used for the terminal alphabet of the automaton.
 */
template < class SymbolType, class StateType >
class SetConstraint< automaton::EpsilonNFTA < SymbolType, StateType >, StateType, automaton::States > {
public:
	/**
	 * Returns true if the state is still used in some transition of the automaton.
	 *
	 * \param automaton the tested automaton
	 * \param state the tested state
	 *
	 * \returns true if the state is used, false othervise
	 */
	static bool used ( const automaton::EpsilonNFTA < SymbolType, StateType > & automaton, const StateType & state ) {
		if ( automaton.getFinalStates ( ).contains ( state ) )
			return true;

		for ( const std::pair < const ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > & t : automaton.getTransitions ( ) ) {
			if ( t.first.template is < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( ) ) {
				const ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > & source = t.first.template get < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( );
				if ( ext::contains ( source.second.begin ( ), source.second.end ( ), state ) ) {
					return true;
				}
			}
			if ( t.first.template is < StateType > ( ) ) {
				if ( t.first.template get < StateType > ( ) == state ) {
					return true;
				}
			}
			if ( t . second == state ) {
				return true;
			}
		}

		return false;
	}

	/**
	 * Returns true as all states are possibly available to be elements of the states.
	 *
	 * \param automaton the tested automaton
	 * \param state the tested state
	 *
	 * \returns true
	 */
	static bool available ( const automaton::EpsilonNFTA < SymbolType, StateType > &, const StateType & ) {
		return true;
	}

	/**
	 * All states are valid as a state of the automaton.
	 *
	 * \param automaton the tested automaton
	 * \param state the tested state
	 */
	static void valid ( const automaton::EpsilonNFTA < SymbolType, StateType > &, const StateType & ) {
	}
};

/**
 * Helper class specifying constraints for the automaton's internal final states component.
 *
 * \tparam SymbolType used for the symbol part of the ranked symbol
 * \tparam StateType used for the terminal alphabet of the automaton.
 */
template < class SymbolType, class StateType >
class SetConstraint< automaton::EpsilonNFTA < SymbolType, StateType >, StateType, automaton::FinalStates > {
public:
	/**
	 * Returns false. Final state is only a mark that the automaton itself does require further.
	 *
	 * \param automaton the tested automaton
	 * \param state the tested state
	 *
	 * \returns false
	 */
	static bool used ( const automaton::EpsilonNFTA < SymbolType, StateType > &, const StateType & ) {
		return false;
	}

	/**
	 * Determines whether the state is available in the automaton's states set.
	 *
	 * \param automaton the tested automaton
	 * \param state the tested state
	 *
	 * \returns true if the state is already in the set of states of the automaton
	 */
	static bool available ( const automaton::EpsilonNFTA < SymbolType, StateType > & automaton, const StateType & state ) {
		return automaton.template accessComponent < automaton::States > ( ).get ( ).contains ( state );
	}

	/**
	 * All states are valid as a final state of the automaton.
	 *
	 * \param automaton the tested automaton
	 * \param state the tested state
	 */
	static void valid ( const automaton::EpsilonNFTA < SymbolType, StateType > &, const StateType & ) {
	}
};

/**
 * Helper for normalisation of types specified by templates used as internal datatypes of symbols and states.
 *
 * \returns new instance of the automaton with default template parameters or unmodified instance if the template parameters were already the default ones
 */
template < class SymbolType, class StateType >
struct normalize < automaton::EpsilonNFTA < SymbolType, StateType > > {
	static automaton::EpsilonNFTA < > eval ( automaton::EpsilonNFTA < SymbolType, StateType > && value ) {
		ext::set < common::ranked_symbol < > > alphabet = alphabet::SymbolNormalize::normalizeRankedAlphabet ( std::move ( value ).getInputAlphabet ( ) );
		ext::set < DefaultStateType > states = automaton::AutomatonNormalize::normalizeStates ( std::move ( value ).getStates ( ) );
		ext::set < DefaultStateType > finalStates = automaton::AutomatonNormalize::normalizeStates ( std::move ( value ).getFinalStates ( ) );

		automaton::EpsilonNFTA < > res ( std::move ( states ), std::move ( alphabet ), std::move ( finalStates ) );

		for ( std::pair < ext::variant < StateType, ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > >, StateType > && transition : ext::make_mover ( std::move ( value ).getTransitions ( ) ) ) {
			DefaultStateType to = automaton::AutomatonNormalize::normalizeState ( std::move ( transition.second ) );
			if ( transition.first.template is < StateType > ( ) ) {
				DefaultStateType from = automaton::AutomatonNormalize::normalizeState ( std::move ( transition.first.template get < StateType > ( ) ) );
				res.addTransition ( from, to );
			} else {
				ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > & source = transition.first.template get < ext::pair < common::ranked_symbol < SymbolType >, ext::vector < StateType > > > ( );

				common::ranked_symbol < DefaultSymbolType > input = alphabet::SymbolNormalize::normalizeRankedSymbol ( std::move ( source.first ) );
				ext::vector < DefaultStateType > from = automaton::AutomatonNormalize::normalizeStates ( std::move ( source.second ) );

				res.addTransition ( std::move ( input ), std::move ( from ), std::move ( to ) );
			}
		}

		return res;
	}
};

} /* namespace core */

extern template class automaton::EpsilonNFTA < >;