-
Jan Trávníček authoredJan Trávníček authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
DFTA.h 22.51 KiB
/*
* DFTA.h
*
* This file is part of Algorithms library toolkit.
* Copyright (C) 2017 Jan Travnicek (jan.travnicek@fit.cvut.cz)
* Algorithms library toolkit is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* Algorithms library toolkit is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with Algorithms library toolkit. If not, see <http://www.gnu.org/licenses/>.
*
* Created on: Apr 14, 2015
* Author: Stepan Plachy
*/
#ifndef DFTA_H_
#define DFTA_H_
#include <ostream>
#include <sstream>
#include <alib/map>
#include <alib/set>
#include <alib/vector>
#include <alib/compare>
#include <core/components.hpp>
#include <common/ranked_symbol.hpp>
#include <common/DefaultStateType.h>
#include <common/DefaultSymbolType.h>
#include <common/DefaultRankType.h>
#include <automaton/AutomatonException.h>
#include <core/normalize.hpp>
#include <alphabet/common/SymbolNormalize.h>
#include <automaton/common/AutomatonNormalize.h>
namespace automaton {
class InputAlphabet;
class States;
class FinalStates;
/**
* \brief
* Nondeterministic finite tree automaton without epsilon transitions. Accepts regular tree languages.
* \details
* Definition is classical definition of finite automata.
* A = (Q, T, \delta, F),
* Q (States) = nonempty finite set of states,
* T (TerminalAlphabet) = finite set of terminal ranked symbols - having this empty won't let automaton do much though,
* \delta = transition function of the form (A, B, C, ...) \times a -> X, where A, B, C, ..., X \in Q and a \in T,
* F (FinalStates) = set of final states
*
* Elements of the \delta mapping must meet following criteria. The size of the state list must equal the rank of the ranked symbol.
*
* Note that target state of a transition is required.
* This class is used to store minimal, total, ... variants of deterministic finite tree automata.
*
* Elements of the \delta mapping must meet following criteria. The size of the state list must equal the rank of the ranked symbol.
*
* \tparam SymbolTypeT used for the symbol part of the ranked symbol
* \tparam RankTypeT used for the rank part of the ranked symbol
* \tparam StateTypeT used to the states, and the initial state of the automaton.
*/
template < class SymbolTypeT = DefaultSymbolType, class RankTypeT = DefaultRankType, class StateTypeT = DefaultStateType >
class DFTA final : public ext::CompareOperators < DFTA < SymbolTypeT, RankTypeT, StateTypeT > >, public core::Components < DFTA < SymbolTypeT, RankTypeT, StateTypeT >, ext::set < common::ranked_symbol < SymbolTypeT, RankTypeT > >, component::Set, InputAlphabet, ext::set < StateTypeT >, component::Set, std::tuple < States, FinalStates > > {
public:
typedef SymbolTypeT SymbolType;
typedef RankTypeT RankType;
typedef StateTypeT StateType;
private:
/**
* Transition function as mapping from a list of states times an input symbol on the left hand side to a state.
*/
ext::map < ext::pair < common::ranked_symbol < SymbolType, RankType >, ext::vector < StateType > >, StateType > transitions;
public:
/**
* \brief Creates a new instance of the automaton.
*/
explicit DFTA ( );
/**
* \brief Creates a new instance of the automaton with a concrete set of states, input alphabet, and a set of final states.
*
* \param states the initial set of states of the automaton
* \param inputAlphabet the initial input alphabet
* \param finalStates the initial set of final states of the automaton
*/
explicit DFTA ( ext::set < StateType > states, ext::set < common::ranked_symbol < SymbolType, RankType > > inputAlphabet, ext::set < StateType > finalStates );
/**
* Getter of states.
*
* \returns the states of the automaton
*/
const ext::set < StateType > & getStates ( ) const & {
return this->template accessComponent < States > ( ).get ( );
}
/**
* Getter of states.
*
* \returns the states of the automaton
*/
ext::set < StateType > && getStates ( ) && {
return std::move ( this->template accessComponent < States > ( ).get ( ) );
}
/**
* Adder of a state.
*
* \param state the new state to be added to a set of states
*
* \returns true if the state was indeed added
*/
bool addState ( StateType state ) {
return this->template accessComponent < States > ( ).add ( std::move ( state ) );
}
/**
* Setter of states.
*
* \param states completely new set of states
*/
void setStates ( ext::set < StateType > states ) {
this->template accessComponent < States > ( ).set ( std::move ( states ) );
}
/**
* Remover of a state.
*
* \param state a state to be removed from a set of states
*
* \returns true if the state was indeed removed
*/
void removeState ( const StateType & state ) {
this->template accessComponent < States > ( ).remove ( state );
}
/**
* Getter of final states.
*
* \returns the final states of the automaton
*/
const ext::set < StateType > & getFinalStates ( ) const & {
return this->template accessComponent < FinalStates > ( ).get ( );
}
/**
* Getter of final states.
*
* \returns the final states of the automaton
*/
ext::set < StateType > && getFinalStates ( ) && {
return std::move ( this->template accessComponent < FinalStates > ( ).get ( ) );
}
/**
* Adder of a final state.
*
* \param state the new state to be added to a set of final states
*
* \returns true if the state was indeed added
*/
bool addFinalState ( StateType state ) {
return this->template accessComponent < FinalStates > ( ).add ( std::move ( state ) );
}
/**
* Setter of final states.
*
* \param states completely new set of final states
*/
void setFinalStates ( ext::set < StateType > states ) {
this->template accessComponent < FinalStates > ( ).set ( std::move ( states ) );
}
/**
* Remover of a final state.
*
* \param state a state to be removed from a set of final states
*
* \returns true if the state was indeed removed
*/
void removeFinalState ( const StateType & state ) {
this->template accessComponent < FinalStates > ( ).remove ( state );
}
/**
* Getter of the input alphabet.
*
* \returns the input alphabet of the automaton
*/
const ext::set < common::ranked_symbol < SymbolType, RankType > > & getInputAlphabet ( ) const & {
return this->template accessComponent < InputAlphabet > ( ).get ( );
}
/**
* Getter of the input alphabet.
*
* \returns the input alphabet of the automaton
*/
ext::set < common::ranked_symbol < SymbolType, RankType > > && getInputAlphabet ( ) && {
return std::move ( this->template accessComponent < InputAlphabet > ( ).get ( ) );
}
/**
* Adder of a input symbol.
*
* \param symbol the new symbol to be added to an input alphabet
*
* \returns true if the symbol was indeed added
*/
bool addInputSymbol ( common::ranked_symbol < SymbolType, RankType > symbol ) {
return this->template accessComponent < InputAlphabet > ( ).add ( std::move ( symbol ) );
}
/**
* Adder of input symbols.
*
* \param symbols new symbols to be added to an input alphabet
*/
void addInputSymbols ( ext::set < common::ranked_symbol < SymbolType, RankType > > symbols ) {
this->template accessComponent < InputAlphabet > ( ).add ( std::move ( symbols ) );
}
/**
* Setter of input alphabet.
*
* \param symbols completely new input alphabet
*/
void setInputAlphabet ( ext::set < common::ranked_symbol < SymbolType, RankType > > symbols ) {
this->template accessComponent < InputAlphabet > ( ).set ( std::move ( symbols ) );
}
/**
* Remover of an input symbol.
*
* \param symbol a symbol to be removed from an input alphabet
*
* \returns true if the symbol was indeed removed
*/
void removeInputSymbol ( const common::ranked_symbol < SymbolType, RankType > & symbol ) {
this->template accessComponent < InputAlphabet > ( ).remove ( symbol );
}
/**
* \brief Add a transition to the automaton.
*
* \details The transition is in a form ( A, B, C, ... ) \times a -> X, where A, B, C, ..., X \in Q and a \in T
*
* \param children the source states (A, B, C, ...)
* \param current the input symbol (a)
* \param next the target state (B)
*
* \throws AutomatonException when transition contains state or symbol not present in the automaton components
*
* \returns true if the transition was indeed added
*/
bool addTransition ( common::ranked_symbol < SymbolType, RankType > current, ext::vector < StateType > children, StateType next );
/**
* \brief Removes a transition from the automaton.
*
* \details The transition is in a form ( A, B, C, ... ) \times a -> X, where A, B, C, ..., X \in Q and a \in T
*
* \param children the source states (A, B, C, ...)
* \param current the input symbol (a)
* \param next the target state (B)
*
* \returns true if the transition was indeed removed
*/
bool removeTransition ( const common::ranked_symbol < SymbolType, RankType > symbol, const ext::vector < StateType > & states, const StateType & next );
/**
* Get the transition function of the automaton in its natural form.
*
* \returns transition function of the automaton
*/
const ext::map < ext::pair < common::ranked_symbol < SymbolType, RankType >, ext::vector < StateType > >, StateType > & getTransitions ( ) const & {
return transitions;
}
/**
* Get the transition function of the automaton in its natural form.
*
* \returns transition function of the automaton
*/
ext::map < ext::pair < common::ranked_symbol < SymbolType, RankType >, ext::vector < StateType > >, StateType > && getTransitions ( ) && {
return std::move ( transitions );
}
/**
* \returns transitions to state @p q
*/
ext::map < ext::pair < common::ranked_symbol < SymbolType, RankType >, ext::vector < StateType > >, StateType > getTransitionsToState ( const StateType & q ) const {
ext::map < ext::pair < common::ranked_symbol < SymbolType, RankType >, ext::vector < StateType > >, StateType > res;
for ( const auto & transition : getTransitions ( ) ) {
if ( transition.second == q )
res.insert ( std::make_pair ( transition.first, q ) );
}
return res;
}
/**
* \returns transitions from state @p q
*/
ext::map < ext::pair < common::ranked_symbol < SymbolType, RankType >, ext::vector < StateType > >, StateType > getTransitionsFromState ( const StateType & q ) const {
ext::map < ext::pair < common::ranked_symbol < SymbolType, RankType >, ext::vector < StateType > >, StateType > res;
for ( const auto & transition : getTransitions ( ) ) {
if ( std::find ( transition.first.second.begin ( ), transition.first.second.end ( ), q ) != transition.first.second.end ( ) )
res.insert ( transition );
}
return res;
}
/**
* The actual compare method
*
* \param other the other instance
*
* \returns the actual relation between two by type same automata instances
*/
int compare ( const DFTA & other ) const;
/**
* Print this object as raw representation to ostream.
*
* \param out ostream where to print
* \param instance object to print
*
* \returns modified output stream
*/
friend std::ostream & operator << ( std::ostream & out, const DFTA & instance ) {
return out << "(DFTA "
<< " states = " << instance.getStates ( )
<< " inputAlphabet = " << instance.getInputAlphabet ( )
<< " finalStates = " << instance.getFinalStates ( )
<< " transitions = " << instance.getTransitions ( )
<< ")";
}
/**
* Casts this instance to as compact as possible string representation.
*
* \returns string representation of the object
*/
operator std::string ( ) const;
};
/**
* Trait to detect whether the type parameter T is or is not DFTA. Derived from std::false_type.
*
* \tparam T the tested type parameter
*/
template < class T >
class isDFTA_impl : public std::false_type {};
/**
* Trait to detect whether the type parameter T is or is not DFTA. Derived from std::true_type.
*
* Specialisation for DFTA.
*
* \tparam SymbolType used for the terminal alphabet of the automaton
* \tparam StateType used for the terminal alphabet of the automaton
*/
template < class SymbolType, class StateType >
class isDFTA_impl < DFTA < SymbolType, StateType > > : public std::true_type {};
/**
* Constexpr true if the type parameter T is DFTA, false otherwise.
*
* \tparam T the tested type parameter
*/
template < class T >
constexpr bool isDFTA = isDFTA_impl < T > { };
template<class SymbolType, class RankType, class StateType >
DFTA < SymbolType, RankType, StateType >::DFTA ( ext::set < StateType > states, ext::set < common::ranked_symbol < SymbolType, RankType > > inputAlphabet, ext::set < StateType > finalStates ) : core::Components < DFTA, ext::set < common::ranked_symbol < SymbolType, RankType > >, component::Set, InputAlphabet, ext::set < StateType >, component::Set, std::tuple < States, FinalStates > > ( std::move ( inputAlphabet ), std::move ( states ), std::move ( finalStates ) ) {
}
template<class SymbolType, class RankType, class StateType >
DFTA < SymbolType, RankType, StateType >::DFTA() : DFTA ( ext::set < StateType > { }, ext::set < common::ranked_symbol < SymbolType, RankType > > { }, ext::set < StateType > { } ) {
}
template<class SymbolType, class RankType, class StateType >
bool DFTA < SymbolType, RankType, StateType >::addTransition ( common::ranked_symbol < SymbolType, RankType > symbol, ext::vector<StateType> prevStates, StateType next) {
if ( prevStates.size() != ( size_t ) symbol.getRank() )
throw AutomatonException("Number of states doesn't match rank of the symbol");
if (! getInputAlphabet().count(symbol))
throw AutomatonException("Input symbol \"" + ext::to_string ( symbol ) + "\" doesn't exist.");
if (! getStates().count(next))
throw AutomatonException("State \"" + ext::to_string ( next ) + "\" doesn't exist.");
for ( const StateType & it : prevStates) {
if (! getStates().count(it))
throw AutomatonException("State \"" + ext::to_string ( it ) + "\" doesn't exist.");
}
ext::pair<common::ranked_symbol < SymbolType, RankType >, ext::vector<StateType> > key = ext::make_pair ( std::move ( symbol ), std::move ( prevStates ) );
if ( transitions.find ( key ) != transitions.end ( ) ) {
if ( transitions.find ( key )->second == next )
return false;
else
throw AutomatonException("Transition already exists");
}
transitions.insert ( std::move ( key ), std::move ( next ) );
return true;
}
template<class SymbolType, class RankType, class StateType >
bool DFTA < SymbolType, RankType, StateType >::removeTransition(const common::ranked_symbol < SymbolType, RankType > symbol, const ext::vector<StateType> & states, const StateType & next) {
ext::pair<common::ranked_symbol < SymbolType, RankType >, ext::vector<StateType> > key = ext::make_pair(symbol, states);
if ( transitions.find ( key ) == transitions.end ( ) )
return false;
if ( transitions.find ( key )->second != next )
throw AutomatonException("Transition does not exist");
transitions.erase(key);
return true;
}
template<class SymbolType, class RankType, class StateType >
int DFTA < SymbolType, RankType, StateType >::compare(const DFTA& other) const {
auto first = ext::tie(getStates(), getInputAlphabet(), getFinalStates(), transitions);
auto second = ext::tie(other.getStates(), other.getInputAlphabet(), other.getFinalStates(), other.transitions);
static ext::compare<decltype(first)> comp;
return comp(first, second);
}
template<class SymbolType, class RankType, class StateType >
DFTA < SymbolType, RankType, StateType >::operator std::string ( ) const {
std::stringstream ss;
ss << *this;
return ss.str();
}
} /* namespace automaton */
namespace core {
/**
* Helper class specifying constraints for the automaton's internal input alphabet component.
*
* \tparam SymbolType used for the symbol part of the ranked symbol
* \tparam RankType used for the rank part of the ranked symbol
* \tparam StateType used for the terminal alphabet of the automaton.
*/
template<class SymbolType, class RankType, class StateType >
class SetConstraint< automaton::DFTA < SymbolType, RankType, StateType >, common::ranked_symbol < SymbolType, RankType >, automaton::InputAlphabet > {
public:
/**
* Returns true if the symbol is still used in some transition of the automaton.
*
* \param automaton the tested automaton
* \param symbol the tested symbol
*
* \returns true if the symbol is used, false othervise
*/
static bool used ( const automaton::DFTA < SymbolType, RankType, StateType > & automaton, const common::ranked_symbol < SymbolType, RankType > & symbol ) {
for ( const std::pair<const ext::pair<common::ranked_symbol < SymbolType, RankType >, ext::vector<StateType> >, StateType>& t : automaton.getTransitions())
if (t.first.first == symbol)
return true;
return false;
}
/**
* Returns true as all symbols are possibly available to be elements of the input alphabet.
*
* \param automaton the tested automaton
* \param symbol the tested symbol
*
* \returns true
*/
static bool available ( const automaton::DFTA < SymbolType, RankType, StateType > &, const common::ranked_symbol < SymbolType, RankType > & ) {
return true;
}
/**
* All symbols are valid as input symbols.
*
* \param automaton the tested automaton
* \param symbol the tested symbol
*/
static void valid ( const automaton::DFTA < SymbolType, RankType, StateType > &, const common::ranked_symbol < SymbolType, RankType > & ) {
}
};
/**
* Helper class specifying constraints for the automaton's internal states component.
*
* \tparam SymbolType used for the symbol part of the ranked symbol
* \tparam RankType used for the rank part of the ranked symbol
* \tparam StateType used for the terminal alphabet of the automaton.
*/
template<class SymbolType, class RankType, class StateType >
class SetConstraint< automaton::DFTA < SymbolType, RankType, StateType >, StateType, automaton::States > {
public:
/**
* Returns true if the state is still used in some transition of the automaton.
*
* \param automaton the tested automaton
* \param state the tested state
*
* \returns true if the state is used, false othervise
*/
static bool used ( const automaton::DFTA < SymbolType, RankType, StateType > & automaton, const StateType & state ) {
if ( automaton.getFinalStates ( ).count ( state ) )
return true;
for ( const std::pair<const ext::pair<common::ranked_symbol < SymbolType, RankType >, ext::vector<StateType> >, StateType>& t : automaton.getTransitions())
if(ext::contains(t.first.second.begin(), t.first.second.end(), state ) || t.second == state)
return true;
return false;
}
/**
* Returns true as all states are possibly available to be elements of the states.
*
* \param automaton the tested automaton
* \param state the tested state
*
* \returns true
*/
static bool available ( const automaton::DFTA < SymbolType, RankType, StateType > &, const StateType & ) {
return true;
}
/**
* All states are valid as a state of the automaton.
*
* \param automaton the tested automaton
* \param state the tested state
*/
static void valid ( const automaton::DFTA < SymbolType, RankType, StateType > &, const StateType & ) {
}
};
/**
* Helper class specifying constraints for the automaton's internal final states component.
*
* \tparam SymbolType used for the symbol part of the ranked symbol
* \tparam RankType used for the rank part of the ranked symbol
* \tparam StateType used for the terminal alphabet of the automaton.
*/
template<class SymbolType, class RankType, class StateType >
class SetConstraint< automaton::DFTA < SymbolType, RankType, StateType >, StateType, automaton::FinalStates > {
public:
/**
* Returns false. Final state is only a mark that the automaton itself does require further.
*
* \param automaton the tested automaton
* \param state the tested state
*
* \returns false
*/
static bool used ( const automaton::DFTA < SymbolType, RankType, StateType > &, const StateType & ) {
return false;
}
/**
* Determines whether the state is available in the automaton's states set.
*
* \param automaton the tested automaton
* \param state the tested state
*
* \returns true if the state is already in the set of states of the automaton
*/
static bool available ( const automaton::DFTA < SymbolType, RankType, StateType > & automaton, const StateType & state ) {
return automaton.template accessComponent < automaton::States > ( ).get ( ).count ( state );
}
/**
* All states are valid as a final state of the automaton.
*
* \param automaton the tested automaton
* \param state the tested state
*/
static void valid ( const automaton::DFTA < SymbolType, RankType, StateType > &, const StateType & ) {
}
};
/**
* Helper for normalisation of types specified by templates used as internal datatypes of symbols and states.
*
* \returns new instance of the automaton with default template parameters or unmodified instance if the template parameters were already the default ones
*/
template < class SymbolType, class RankType, class StateType >
struct normalize < automaton::DFTA < SymbolType, RankType, StateType > > {
static automaton::DFTA < > eval ( automaton::DFTA < SymbolType, RankType, StateType > && value ) {
ext::set < common::ranked_symbol < > > alphabet = alphabet::SymbolNormalize::normalizeRankedAlphabet ( std::move ( value ).getInputAlphabet ( ) );
ext::set < DefaultStateType > states = automaton::AutomatonNormalize::normalizeStates ( std::move ( value ).getStates ( ) );
ext::set < DefaultStateType > finalStates = automaton::AutomatonNormalize::normalizeStates ( std::move ( value ).getFinalStates ( ) );
automaton::DFTA < > res ( std::move ( states ), std::move ( alphabet ), std::move ( finalStates ) );
for ( std::pair < ext::pair < common::ranked_symbol < SymbolType, RankType >, ext::vector < StateType > >, StateType > && transition : ext::make_mover ( std::move ( value ).getTransitions ( ) ) ) {
common::ranked_symbol < DefaultSymbolType, DefaultRankType > input = alphabet::SymbolNormalize::normalizeRankedSymbol ( std::move ( transition.first.first ) );
ext::vector < DefaultStateType > from = automaton::AutomatonNormalize::normalizeStates ( std::move ( transition.first.second ) );
DefaultStateType to = automaton::AutomatonNormalize::normalizeState ( std::move ( transition.second ) );
res.addTransition ( std::move ( input ), std::move ( from ), std::move ( to ) );
}
return res;
}
};
} /* namespace core */
#endif /* DFTA_H_ */